Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
J Med Chem ; 67(16): 13703-13722, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39115891

ABSTRACT

Extracellular vesicles (EVs) can transfer antigens and immunomodulatory molecules, and such EVs released by antigen-presenting cells equipped with immunostimulatory functions have been utilized for vaccine formulations. A prior high-throughput screening campaign led to the identification of compound 634 (1), which enhanced EV release and increased intracellular Ca2+ influx. Here, we performed systematic structure-activity relationship (SAR) studies to investigate the scaffold for its potency as a vaccine adjuvant. Synthesized compounds were analyzed in vitro for CD63 reporter activity (a marker for EV biogenesis) in human THP-1 cells, induction of Ca2+ influx, IL-12 production, and cell viability in murine bone-marrow-derived dendritic cells. The SAR studies indicated that the ester functional group was requisite, and the sulfur atom of the benzothiadiazole ring replaced with a higher selenium atom (9f) or a bioisosteric ethenyl group (9h) retained potency. Proof-of-concept vaccination studies validated the potency of the selected compounds as novel vaccine adjuvants.


Subject(s)
Adjuvants, Immunologic , Thiadiazoles , Structure-Activity Relationship , Humans , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/chemical synthesis , Animals , Thiadiazoles/chemistry , Thiadiazoles/pharmacology , Thiadiazoles/chemical synthesis , Mice , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , THP-1 Cells , Vaccines/immunology , Vaccines/chemistry , Mice, Inbred C57BL , Female , Extracellular Vesicles/chemistry , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism
3.
Breast Cancer Res ; 26(1): 32, 2024 02 26.
Article in English | MEDLINE | ID: mdl-38408999

ABSTRACT

BACKGROUND: Zilovertamab is a humanized monoclonal antibody targeting ROR1, an onco-embryonic antigen expressed by malignant cells of a variety of solid tumors, including breast cancer. A prior phase 1 study showed that zilovertamab was well tolerated and effective in inhibiting ROR1-signaling, which leads to activation of ERK1/2, NF-κB, and NRF2 target genes. This phase 1b study evaluated the safety and tolerability of zilovertamab with paclitaxel in patients with advanced breast cancer. PATIENTS AND METHODS: Eligible patients had locally advanced, unresectable, or metastatic HER2- breast cancer with Eastern Cooperative Group performance status of 0-2 and without prior taxane therapy in the advanced setting. Study treatment included 600 mg of zilovertamab administered intravenously (IV) on Days 1 and 15 of Cycle 1 and then Day 1 of each 28-day cycle along with paclitaxel weekly at 80 mg/m2 IV. RESULTS: Study patients had received a median of 4 prior therapies (endocrine therapy + chemotherapy) for locally advanced, unresectable, or metastatic disease. No patient discontinued therapy due to toxicity ascribed to zilovertamab. Adverse events were consistent with the known safety profile of paclitaxel. Of 16 patients, 6 (38%) had a partial response, and 6/16 (38%) patients had stable disease as best tumor response. CONCLUSION: The combination of zilovertamab and paclitaxel was safe and well tolerated in heavily pre-treated advanced breast cancer patients. Further evaluation of ROR1 targeting in breast cancer patients with zilovertamab is warranted. TRIAL REGISTRATION: NCT02776917. Registered on ClinicalTrials.gov on 05/17/2016.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Paclitaxel/therapeutic use , Receptor, ErbB-2/genetics , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols/adverse effects
4.
Cancer Res ; 83(18): 3001-3012, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37378556

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer with a low survival rate. Recently, new drugs that target KRASG12D, a common mutation in PDAC, have been developed. We studied one of these compounds, MRTX1133, and found it was specific and effective at low nanomolar concentrations in patient-derived organoid models and cell lines harboring KRASG12D mutations. Treatment with MRTX1133 upregulated the expression and phosphorylation of EGFR and HER2, indicating that inhibition of ERBB signaling may potentiate MRTX1133 antitumor activity. Indeed, the irreversible pan-ERBB inhibitor, afatinib, potently synergized with MRTX1133 in vitro, and cancer cells with acquired resistance to MRTX1133 in vitro remained sensitive to this combination therapy. Finally, the combination of MRTX1133 and afatinib led to tumor regression and longer survival in orthotopic PDAC mouse models. These results suggest that dual inhibition of ERBB and KRAS signaling may be synergistic and circumvent the rapid development of acquired resistance in patients with KRAS mutant pancreatic cancer. SIGNIFICANCE: KRAS-mutant pancreatic cancer models, including KRAS inhibitor-resistant models, show exquisite sensitivity to combined pan-ERBB and KRAS targeting, which provides the rationale for testing this drug combination in clinical trials.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Afatinib/pharmacology , ErbB Receptors/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Mutation , Cell Line, Tumor , Pancreatic Neoplasms
5.
ACS Chem Biol ; 18(4): 982-993, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37039433

ABSTRACT

Extracellular vesicles (EVs) transfer antigens and immunomodulatory molecules in immunologic synapses as a part of intracellular communication, and EVs equipped with immunostimulatory functions have been utilized for vaccine formulation. Hence, we sought small-molecule compounds that increase immunostimulatory EVs released by antigen-presenting dendritic cells (DCs) for enhancement of vaccine immunogenicity. We previously performed high-throughput screening on a 28K compound library using three THP-1 reporter cell lines with CD63 Turbo-Luciferase, NF-κB, and interferon-sensitive response element (ISRE) reporter constructs, respectively. Because intracellular Ca2+ elevation enhances EV release, we screened 80 hit compounds and identified compound 634 as a Ca2+ influx inducer. 634 enhanced EV release in murine bone marrow-derived dendritic cells (mBMDCs) and increased costimulatory molecule expression on the surface of EVs and the parent cells. EVs isolated from 634-treated mBMDCs induced T cell proliferation in the presence of antigenic peptides. To assess the roles of intracellular Ca2+ elevation in immunostimulatory EV release, we performed structure-activity relationship (SAR) studies of 634. The analogues that retained the ability to induce Ca2+ influx induced more EVs with immunostimulatory properties from mBMDCs than did those that lacked the ability to induce Ca2+ influx. The levels of Ca2+ induction of synthesized analogues correlated with the numbers of EVs released and costimulatory molecule expression on the parent cells. Collectively, our study presents that a small molecule, 634, enhances the release of EVs with immunostimulatory potency via induction of Ca2+ influx. This agent is a novel tool for EV-based immune studies and vaccine development.


Subject(s)
Calcium , Extracellular Vesicles , Immunologic Factors , Animals , Mice , Calcium/metabolism , Extracellular Vesicles/drug effects , Extracellular Vesicles/metabolism , Immunization , Small Molecule Libraries , Immunogenicity, Vaccine/drug effects , Immunologic Factors/chemistry
6.
BMC Bioinformatics ; 24(1): 57, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803209

ABSTRACT

BACKGROUND: The growing amount of high dimensional biomolecular data has spawned new statistical and computational models for risk prediction and disease classification. Yet, many of these methods do not yield biologically interpretable models, despite offering high classification accuracy. An exception, the top-scoring pair (TSP) algorithm derives parameter-free, biologically interpretable single pair decision rules that are accurate and robust in disease classification. However, standard TSP methods do not accommodate covariates that could heavily influence feature selection for the top-scoring pair. Herein, we propose a covariate-adjusted TSP method, which uses residuals from a regression of features on the covariates for identifying top scoring pairs. We conduct simulations and a data application to investigate our method, and compare it to existing classifiers, LASSO and random forests. RESULTS: Our simulations found that features that were highly correlated with clinical variables had high likelihood of being selected as top scoring pairs in the standard TSP setting. However, through residualization, our covariate-adjusted TSP was able to identify new top scoring pairs, that were largely uncorrelated with clinical variables. In the data application, using patients with diabetes (n = 977) selected for metabolomic profiling in the Chronic Renal Insufficiency Cohort (CRIC) study, the standard TSP algorithm identified (valine-betaine, dimethyl-arg) as the top-scoring metabolite pair for classifying diabetic kidney disease (DKD) severity, whereas the covariate-adjusted TSP method identified the pair (pipazethate, octaethylene glycol) as top-scoring. Valine-betaine and dimethyl-arg had, respectively, ≥ 0.4 absolute correlation with urine albumin and serum creatinine, known prognosticators of DKD. Thus without covariate-adjustment the top-scoring pair largely reflected known markers of disease severity, whereas covariate-adjusted TSP uncovered features liberated from confounding, and identified independent prognostic markers of DKD severity. Furthermore, TSP-based methods achieved competitive classification accuracy in DKD to LASSO and random forests, while providing more parsimonious models. CONCLUSIONS: We extended TSP-based methods to account for covariates, via a simple, easy to implement residualizing process. Our covariate-adjusted TSP method identified metabolite features, uncorrelated from clinical covariates, that discriminate DKD severity stage based on the relative ordering between two features, and thus provide insights into future studies on the order reversals in early vs advanced disease states.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Humans , Diabetic Nephropathies/diagnosis , Betaine , Algorithms , Metabolomics/methods
7.
J Immunother Cancer ; 11(1)2023 01.
Article in English | MEDLINE | ID: mdl-36634919

ABSTRACT

BACKGROUND: Pancreatic cancer (PC) has a poor prognosis, and most patients present with either locally advanced or distant metastatic disease. Irreversible electroporation (IRE) is a non-thermal method of ablation used clinically in locally advanced PC, but most patients eventually develop distant recurrence. We have previously shown that IRE alone is capable of generating protective, neoantigen-specific immunity. Here, we aim to generate meaningful therapeutic immune effects by combining IRE with local (intratumoral) delivery of a CD40 agonistic antibody (CD40Ab). METHODS: KPC46 organoids were generated from a tumor-bearing male KrasLSL-G12D-p53LSL-R172H-Pdx-1-Cre (KPC) mouse. Orthotopic tumors were established in the pancreatic tail of B6/129 F1J mice via laparotomy. Mice were randomized to treatment with either sham laparotomy, IRE alone, CD40Ab alone, or IRE followed immediately by CD40Ab injection. Metastatic disease and immune infiltration in the liver were analyzed 14 days postprocedure using flow cytometry and multiplex immunofluorescence imaging with spatial analysis. Candidate neoantigens were identified by mutanome profiling of tumor tissue for ex vivo functional analyses. RESULTS: The combination of IRE+CD40 Ab improved median survival to greater than 35 days, significantly longer than IRE (21 days) or CD40Ab (24 days) alone (p<0.01). CD40Ab decreased metastatic disease burden, with less disease in the combination group than in the sham group or IRE alone. Immunohistochemistry of liver metastases revealed a more than twofold higher infiltration of CD8+T cells in the IRE+CD40 Ab group than in any other group (p<0.01). Multiplex immunofluorescence imaging revealed a 4-6 fold increase in the density of CD80+CD11c+ activated dendritic cells (p<0.05), which were spatially distributed throughout the tumor unlike the sham group, where they were restricted to the periphery. In contrast, CD4+FoxP3+ T-regulatory cells (p<0.05) and Ly6G+myeloid derived cells (p<0.01) were reduced and restricted to the tumor periphery in the IRE+CD40 Ab group. T-cells from the IRE+CD40 Ab group recognized significantly more peptides representing candidate neoantigens than did T-cells from the IRE or untreated control groups. CONCLUSIONS: IRE can induce local tumor regression and neoantigen-specific immune responses. Addition of CD40Ab to IRE improved dendritic cell activation and neoantigen recognition, while generating a strong systemic antitumor T-cell response that inhibited metastatic disease progression.


Subject(s)
Liver Neoplasms , Pancreatic Neoplasms , Animals , Male , Mice , Antibodies/therapeutic use , Electroporation/methods , Immunity , Liver Neoplasms/drug therapy , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms
8.
Front Pharmacol ; 13: 869649, 2022.
Article in English | MEDLINE | ID: mdl-35479316

ABSTRACT

Extracellular vesicles (EVs) play an important role in intercellular communication and regulation of cells, especially in the immune system where EVs can participate in antigen presentation and may have adjuvant effects. We aimed to identify small molecule compounds that can increase EV release and thereby enhance the immunogenicity of vaccines. We utilized a THP-1 reporter cell line engineered to release EV-associated tetraspanin (CD63)-Turbo-luciferase to quantitatively measure EVs released in culture supernatants as a readout of a high throughput screen (HTS) of 27,895 compounds. In parallel, the cytotoxicity of the compounds was evaluated by PrestoBlue dye assay. For screening immunostimulatory potency, we performed two additional independent HTS on the same compound library using NF-κB and interferon-stimulated response element THP-1 reporter cell lines. Hit compounds were then identified in each of the 3 HTS's, using a "Top X″ and a Gaussian Mixture Model approach to rule out false positive compounds and to increase the sensitivity of the hit selection. Thus, 644 compounds were selected as hits which were further evaluated for induction of IL-12 in murine bone-marrow derived dendritic cells (mBMDCs) and for effects of cell viability. The resulting 130 hits were then assessed from a medicinal chemistry perspective to remove compounds with functional group liabilities. Finally, 80 compounds were evaluated as vaccine adjuvants in vivo using ovalbumin as a model antigen. We analyzed 18 compounds with adjuvant activity for their ability to induce the expression of co-stimulatory molecules on mBMDCs. The full complement of data was then used to cluster the compounds into 4 distinct biological activity profiles. These compounds were also evaluated for quantitation of EV release and spider plot overlays were generated to compare the activity profiles of compounds within each cluster. This tiered screening process identified two compounds that belong to the 4-thieno-2-thiopyrimidine scaffold with identical screening profiles supporting data reproducibility and validating the overall screening process. Correlation patterns in the adjuvanticity data suggested a role for CD63 and NF-κB pathways in potentiating antigen-specific antibody production. Thus, our three independent cell-based HTS campaigns led to identification of immunostimulatory compounds that release EVs and have adjuvant activity.

9.
ACS Chem Biol ; 17(1): 217-229, 2022 01 21.
Article in English | MEDLINE | ID: mdl-34985883

ABSTRACT

There remains an unmet need for reliable fully synthetic adjuvants that increase lasting protective immune responses from vaccines. We previously reported a high-throughput screening for small molecules that extended nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB) activation after a Toll-like receptor 4 (TLR4) ligand, lipopolysaccharide (LPS), stimulation using a human myeloid reporter cell line. We identified compounds with a conserved aminothiazole scaffold including 2D216 [N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide], which increased murine antigen-specific antibody responses when used as a co-adjuvant with LPS. Here, we examined the mechanism of action in human cells. Although 2D216 activated the major mitogen-activated protein kinases, it did not interact with common kinases and phosphatases and did not stimulate many of the pattern recognition receptors (PRRs). Instead, the mechanism of action was linked to intracellular Ca2+ elevation via Ca2+ channel(s) at the plasma membrane and nuclear translocation of the nuclear factor of activated T-cells (NFAT) as supported by RNA-seq data, analysis by reporter cells, Ca2+ flux assays, and immunoblots. Interestingly, 2D216 had minimal, if any, activity on Jurkat T cells but induced cytokine production and surface expression of costimulatory molecules on cells with antigen-presenting functions. A small series of analogs of 2D216 were tested for the ability to enhance a TLR4 ligand-stimulated autologous mixed lymphocyte reaction (MLR). In the MLR, 2E151, N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-((4-propylpiperidin-1-yl)sulfonyl)benzamide, was more potent than 2D216. These results indicate that a small molecule that is not a direct PRR agonist can act as a co-adjuvant to an approved adjuvant to enhance human immune responses via a complementary mechanism of action.


Subject(s)
Adjuvants, Immunologic , Calcium Channel Agonists , Animals , Humans , Mice , Adjuvants, Immunologic/pharmacology , Calcium Channel Agonists/pharmacology , Cell Line , Cell Proliferation/drug effects , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , Lymphocytes/drug effects , Ovalbumin/immunology , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism
10.
Metabolites ; 11(10)2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34677386

ABSTRACT

Acute kidney injury (AKI) is defined as a rapid decline in kidney function. The associated syndromes may lead to increased morbidity and mortality, but its early detection remains difficult. Using capillary electrophoresis time-of-flight mass spectrometry (CE-TOFMS), we analyzed the urinary metabolomic profile of patients admitted to the intensive care unit (ICU) after invasive surgery. Urine samples were collected at six time points: before surgery, at ICU admission and 6, 12, 24 and 48 h after. First, urine samples from 61 initial patients (non-AKI: 23, mild AKI: 24, severe AKI: 14) were measured, followed by the measurement of urine samples from 60 additional patients (non-AKI: 40, mild AKI: 20). Glycine and ethanolamine were decreased in patients with AKI compared with non-AKI patients at 6-24 h in the two groups. The linear statistical model constructed at each time point by machine learning achieved the best performance at 24 h (median AUC, area under the curve: 89%, cross-validated) for the 1st group. When cross-validated between the two groups, the AUC showed the best value of 70% at 12 h. These results identified metabolites and time points that show patterns specific to subjects who develop AKI, paving the way for the development of better biomarkers.

11.
Front Immunol ; 12: 701445, 2021.
Article in English | MEDLINE | ID: mdl-34650551

ABSTRACT

As viruses continue to mutate the need for rapid high titer neutralizing antibody responses has been highlighted. To meet these emerging threats, agents that enhance vaccine adjuvant activity are needed that are safe with minimal local or systemic side effects. To respond to this demand, we sought small molecules that would sustain and improve the protective effect of a currently approved adjuvant, monophosphoryl lipid A (MPLA), a Toll-like receptor 4 (TLR4) agonist. A lead molecule from a high-throughput screen, (N-(4-(2,5-dimethylphenyl)thiazol-2-yl)-4-(piperidin-1-ylsulfonyl)benzamide, was identified as a hit compound that sustained NF-κB activation by a TLR4 ligand, lipopolysaccharide (LPS), after an extended incubation (16 h). In vitro, the resynthesized compound (2D216) enhanced TLR4 ligand-induced innate immune activation and antigen presenting function in primary murine bone marrow-derived dendritic cells without direct activation of T cells. In vivo murine vaccination studies demonstrated that compound 2D216 acted as a potent co-adjuvant when used in combination with MPLA that enhanced antigen-specific IgG equivalent to that of AS01B. The combination adjuvant MPLA/2D216 produced Th1 dominant immune responses and importantly protected mice from lethal influenza virus challenge. 2D216 alone or 2D216/MPLA demonstrated minimal local reactogenicity and no systemic inflammatory response. In summary, 2D216 augmented the beneficial protective immune responses of MPLA as a co-adjuvant and showed an excellent safety profile.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza Vaccines/immunology , Influenza Vaccines/pharmacology , Lipid A/analogs & derivatives , Animals , Female , Influenza A virus , Lipid A/immunology , Lipid A/pharmacology , Male , Mice , Mice, Inbred BALB C , Orthomyxoviridae Infections
12.
JAMA Netw Open ; 4(8): e2121387, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34347057

ABSTRACT

Importance: The US Food and Drug Administration's implementation of graphic warning labels (GWLs) on cigarette packs is under challenge in US courts. Objective: To determine whether GWLs can affect US smokers' perceptions about their cigarettes or health consequences and changes in smoking behavior. Design, Setting, and Participants: This study was a randomized clinical trial of the effect of a 3-month, real-world experience of cigarettes with GWL packaging. Community recruitment was done from September 2016 through December 2019 of daily smokers from San Diego, California, aged 21 to 65 years, who were not ready to quit. Participants were randomized to purchase and receive cigarettes in 1 of 3 pack designs: GWL, blank, or standard US pack. Data analysis was performed from July 2020 to February 2021. Interventions: The study manufactured GWL cigarette packs (3 versions with Australian-licensed images) and packs devoid of marketing. For 3 months, participants purchased GWL, blank, or standard US pack cigarettes that were delivered to their home. Main Outcomes and Measures: Smoking-related cognitions and behavior were queried by daily and weekly interactive text messages. Smoking behavior was self-reported before and after the intervention by 96% of randomized participants and was biochemically validated on a subsample. Results: The study sample included 357 participants (195 women [54.6%]; mean [SD] age, 39.5 [11.9] years); 116 were randomized to the standard US pack group, 118 were randomized to the GWL pack group, and 125 were randomized to the blank pack group. Over the 3 months, participants who received the GWL packs had reduced positive perceptions of recent cigarettes smoked compared with participants who received the branded US pack (mean difference, -0.46 SD; 95% CI, -0.73 SD to -0.20 SD; P < .001). Health concerns increased in all groups, with a significant increase in the GWL group vs the US pack group (mean difference, 0.35 SD; 95% CI, 0.09 SD to 0.62 SD; P = .002). Quitting cognitions increased in all study groups, with a peak mean change of 0.60 SD for GWL participants vs 0.34 SD for US pack participants (mean difference, 0.55 SD; 95% CI, 0.28 SD to 0.81 SD; P < .001). GWL participants had slightly more cigarette abstinence periods per week than the US pack group, but the difference was not significant (adjusted odds ratio, 1.06; 95% CI, 0.99 to 1.13). At 3 months, there was no between-group difference in any smoking behavior. The blank pack group was similar to the US pack group on all measures. Conclusions and Relevance: These findings suggest that the introduction of GWL packs appears to decrease positive perceptions of cigarettes and increase quitting cognitions in the short term. However, additional complementary tobacco control strategies may be necessary for GWL packs to be associated with reduced smoking behavior. Trial Registration: ClinicalTrials.gov Identifier: NCT02676193.


Subject(s)
Product Labeling/methods , Smoking/psychology , Tobacco Products , Adult , Aged , Female , Humans , Male , Middle Aged , United States
13.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34078669

ABSTRACT

Vaccine adjuvants enhance and prolong pathogen-specific protective immune responses. Recent reports indicate that host factors-such as aging, pregnancy, and genetic polymorphisms-influence efficacies of vaccines adjuvanted with Toll-like receptor (TLR) or known pattern-recognition receptor (PRR) agonists. Although PRR independent adjuvants (e.g., oil-in-water emulsion and saponin) are emerging, these adjuvants induce some local and systemic reactogenicity. Hence, new TLR and PRR-independent adjuvants that provide greater potency alone or in combination without compromising safety are highly desired. Previous cell-based high-throughput screenings yielded a small molecule 81 [N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide], which enhanced lipopolysaccharide-induced NF-κB and type I interferon signaling in reporter assays. Here compound 81 activated innate immunity in primary human peripheral blood mononuclear cells and murine bone marrow-derived dendritic cells (BMDCs). The innate immune activation by 81 was independent of TLRs and other PRRs and was significantly reduced in mitochondrial antiviral-signaling protein (MAVS)-deficient BMDCs. Compound 81 activities were mediated by mitochondrial dysfunction as mitophagy inducers and a mitochondria specific antioxidant significantly inhibited cytokine induction by 81. Both compound 81 and a derivative obtained via structure-activity relationship studies, 2F52 [N-benzyl-N-(4-chloro-2,5-dimethoxyphenyl)-4-ethoxybenzenesulfonamide] modestly increased mitochondrial reactive oxygen species and induced the aggregation of MAVS. Neither 81 nor 2F52 injected as adjuvants caused local or systemic toxicity in mice at effective concentrations for vaccination. Furthermore, vaccination with inactivated influenza virus adjuvanted with 2F52 demonstrated protective effects in a murine lethal virus challenge study. As an unconventional and safe adjuvant that does not require known PRRs, compound 2F52 could be a useful addition to vaccines.


Subject(s)
Adjuvants, Immunologic/pharmacology , Influenza Vaccines/pharmacology , Influenza, Human/immunology , Mitochondria/drug effects , Orthomyxoviridae Infections/immunology , Animals , Antibodies, Viral/immunology , Dendritic Cells/immunology , Female , Gene Expression , Humans , Immunity, Innate/drug effects , Influenza Vaccines/immunology , Leukocytes, Mononuclear/immunology , Mice , Mice, Inbred BALB C , Mitochondria/genetics , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological , Toll-Like Receptors
14.
Front Pharmacol ; 12: 668609, 2021.
Article in English | MEDLINE | ID: mdl-33935791

ABSTRACT

Extracellular vesicles (EVs) are identified as mediators of intercellular communication and cellular regulation. In the immune system, EVs play a role in antigen presentation as a part of cellular communication. To enable drug discovery and characterization of compounds that affect EV biogenesis, function, and release in immune cells, we developed and characterized a reporter cell line that allows the quantitation of EVs shed into culture media in phenotypic high-throughput screen (HTS) format. Tetraspanins CD63 and CD9 were previously reported to be enriched in EVs; hence, a construct with dual reporters consisting of CD63-Turbo-luciferase (Tluc) and CD9-Emerald green fluorescent protein (EmGFP) was engineered. This construct was transduced into the human monocytic leukemia cell line, THP-1. Cells expressing the highest EmGFP were sorted by flow cytometry as single cell, and clonal pools were expanded under antibiotic selection pressure. After four passages, the green fluorescence dimmed, and EV biogenesis was then tracked by luciferase activity in culture supernatants. The Tluc activities of EVs shed from CD63Tluc-CD9EmGFP reporter cells in the culture supernatant positively correlated with the concentrations of released EVs measured by nanoparticle tracking analysis. To examine the potential for use in HTS, we first miniaturized the assay into a robotic 384-well plate format. A 2210 commercial compound library (Maybridge) was then screened twice on separate days, for the induction of extracellular luciferase activity. The screening data showed high reproducibility on days 1 and 2 (78.6%), a wide signal window, and an excellent Z' factor (average of 2-day screen, 0.54). One hundred eighty-seven compounds showed a response ratio that was 3SD above the negative controls in both day 1 and 2 screens and were considered as hit candidates (approximately 10%). Twenty-two out of 40 re-tested compounds were validated. These results indicate that the performance of CD63Tluc-CD9EmGFP reporter cells is reliable, reproducible, robust, and feasible for HTS of compounds that regulate EV release by the immune cells.

15.
Front Immunol ; 11: 1207, 2020.
Article in English | MEDLINE | ID: mdl-32636840

ABSTRACT

The limited efficacy of seasonal influenza vaccines is usually attributed to ongoing variation in the major antigenic targets for protective antibody responses including hemagglutinin (HA) and neuraminidase (NA). Hence, vaccine development has largely focused on broadening antigenic epitopes to generate cross-reactive protection. However, the vaccine adjuvant components which can accelerate, enhance and prolong antigenic immune responses, can also increase the breadth of these responses. We previously demonstrated that the combination of synthetic small-molecule Toll-like receptor 4 (TLR4) and TLR7 ligands is a potent adjuvant for recombinant influenza virus HA, inducing rapid, and sustained antibody responses that are protective against influenza viruses in homologous and heterologous murine challenge models. To further enhance adjuvant efficacy, we performed a structure-activity relationship study for the TLR4 ligand, N-cyclohexyl-2-((5-methyl-4-oxo-3-phenyl-4,5-dihydro-3H-pyrimido[5,4-b]indol-2-yl)thio)acetamide (C25H26N4O2S; 1Z105), and identified the 8-(furan-2-yl) substituted pyrimido[5,4-b]indole analog (C29H28N4O3S; 2B182C) as a derivative with higher potency in activating both human and mouse TLR4-NF-κB reporter cells and primary cells. In a prime-boost immunization model using inactivated influenza A virus [IIAV; A/California/04/2009 (H1N1)pdm09], 2B182C used as adjuvant induced higher serum anti-HA and anti-NA IgG1 levels compared to 1Z105, and also increased the anti-NA IgG2a responses. In combination with a TLR7 ligand, 1V270, 2B182C induced equivalent levels of anti-NA and anti-HA IgG1 to 1V270+1Z105. However, the combination of 1V270+2B182C induced 10-fold higher anti-HA and anti-NA IgG2a levels compared to 1V270+1Z105. A stable liposomal formulation of 1V270+2B182C was developed, which synergistically enhanced anti-HA and anti-NA IgG1 and IgG2a responses without demonstrable reactogenicity after intramuscular injection. Notably, vaccination with IIAV plus the liposomal formulation of 1V270+2B182C protected mice against lethal homologous influenza virus (H1N1)pdm09 challenge and reduced lung viral titers and cytokine levels. The combination adjuvant induced a greater diversity in B cell clonotypes of immunoglobulin heavy chain (IGH) genes in the draining lymph nodes and antibodies against a broad spectrum of HA epitopes encompassing HA head and stalk domains and with cross-reactivity against different subtypes of HA and NA. This novel combination liposomal adjuvant contributes to a more broadly protective vaccine while demonstrating an attractive safety profile.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Viral/immunology , Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/immunology , Orthomyxoviridae Infections/immunology , Animals , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Liposomes , Mice , Neuraminidase/immunology , Toll-Like Receptor 4/immunology , Toll-Like Receptor 7/immunology
16.
Breast Cancer Res Treat ; 179(1): 197-206, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31542876

ABSTRACT

PURPOSE: Multi-gene signatures provide biological insight and risk stratification in breast cancer. Intrinsic molecular subtypes defined by mRNA expression of 50 genes (PAM50) are prognostic in hormone-receptor positive postmenopausal breast cancer. Yet, for 25-40% in the PAM50 intermediate risk group, long-term risk remains uncertain. Our study aimed to (i) test the long-term prognostic value of the PAM50 signature in pre- and post-menopausal breast cancer; (ii) investigate if the PAM50 model could be improved by addition of other mRNAs implicated in oncogenesis. METHODS: We used archived FFPE samples from 1723 breast cancer survivors; high quality reads were obtained on 1253 samples. Transcript expression was quantified using a custom codeset with probes for > 100 targets. Cox models assessed gene signatures for breast cancer relapse and survival. RESULTS: Over 15 + years of follow-up, PAM50 subtypes were (P < 0.01) associated with breast cancer outcomes after accounting for tumor stage, grade and age at diagnosis. Results did not differ by menopausal status at diagnosis. Women with Luminal B (versus Luminal A) subtype had a > 60% higher hazard. Addition of a 13-gene hypoxia signature improved prognostication with > 40% higher hazard in the highest vs lowest hypoxia tertiles. CONCLUSIONS: PAM50 intrinsic subtypes were independently prognostic for long-term breast cancer survival, irrespective of menopausal status. Addition of hypoxia signatures improved risk prediction. If replicated, incorporating the 13-gene hypoxia signature into the existing PAM50 risk assessment tool, may refine risk stratification and further clarify treatment for breast cancer.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Cancer Survivors/statistics & numerical data , Gene Expression Profiling/methods , Adult , Aged , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Hypoxia , Female , Gene Expression Regulation, Neoplastic , Humans , Middle Aged , Neoplasm Staging , Prognosis , Survival Analysis
17.
Cancer Epidemiol Biomarkers Prev ; 28(9): 1525-1533, 2019 09.
Article in English | MEDLINE | ID: mdl-31186261

ABSTRACT

BACKGROUND: There is substantial variation in breast cancer survival rates, even among patients with similar clinical and genomic profiles. New biomarkers are needed to improve risk stratification and inform treatment options. Our aim was to identify novel miRNAs associated with breast cancer survival and quantify their prognostic value after adjusting for established clinical factors and genomic markers. METHODS: Using the Women's Healthy Eating and Living (WHEL) breast cancer cohort with >15 years of follow-up and archived tumor specimens, we assayed PAM50 mRNAs and 25 miRNAs using the Nanostring nCounter platform. RESULTS: We obtained high-quality reads on 1,253 samples (75% of available specimens) and used an existing research-use algorithm to ascertain PAM50 subtypes and risk scores (ROR-PT). We identified miRNAs significantly associated with breast cancer outcomes and then tested these in independent TCGA samples. miRNAs that were also prognostic in TCGA samples were further evaluated in multiple regression Cox models. We also used penalized regression for unbiased discovery. CONCLUSIONS: Two miRNAs, 210 and 29c, were associated with breast cancer outcomes in the WHEL and TCGA studies and further improved risk stratification within PAM50 risk groups: 10-year survival was 62% in the node-negative high miR-210-high ROR-PT group versus 75% in the low miR-210- high ROR-PT group. Similar results were obtained for miR-29c. We identified three additional miRNAs, 187-3p, 143-3p, and 205-5p, via penalized regression. IMPACT: Our findings suggest that miRNAs might be prognostic for long-term breast cancer survival and might improve risk stratification. Further research to incorporate miRNAs into existing clinicogenomic signatures is needed.


Subject(s)
Breast Neoplasms/genetics , Adolescent , Adult , Aged , Breast Neoplasms/mortality , Female , Humans , Middle Aged , Survival Analysis , Young Adult
18.
Nat Commun ; 10(1): 2415, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31142745

ABSTRACT

The original version of this Article contained an error in the author affiliations. Trey Ideker was incorrectly associated with 'Department of Medicine (Oncology), Stanford University School of Medicine, 875 Blake Wilbur Dr, Palo Alto, CA 94304, USA.' This has now been corrected in both the PDF and HTML versions of the Article.

19.
Nat Commun ; 10(1): 2188, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097695

ABSTRACT

Although promoter-associated CpG islands have been established as targets of DNA methylation changes in cancer, previous studies suggest that epigenetic dysregulation outside the promoter region may be more closely associated with transcriptional changes. Here we examine DNA methylation, chromatin marks, and transcriptional alterations to define the relationship between transcriptional modulation and spatial changes in chromatin structure. Using human papillomavirus-related oropharyngeal carcinoma as a model, we show aberrant enrichment of repressive H3K9me3 at the transcriptional start site (TSS) with methylation-associated, tumor-specific gene silencing. Further analysis identifies a hypermethylated subtype which shows a functional convergence on MYC targets and association with CREBBP/EP300 mutation. The tumor-specific shift to transcriptional repression associated with DNA methylation at TSSs was confirmed in multiple tumor types. Our data may show a common underlying epigenetic dysregulation in cancer associated with broad enrichment of repressive chromatin marks and aberrant DNA hypermethylation at TSSs in combination with MYC network activation.


Subject(s)
Chromatin/metabolism , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Transcription Initiation Site , CREB-Binding Protein/genetics , Cell Line, Tumor , Datasets as Topic , E1A-Associated p300 Protein/genetics , Gene Silencing , Histones/genetics , Histones/metabolism , Humans , Mutation , Neoplasms/pathology , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction/genetics
20.
Biomed Res Int ; 2018: 8091283, 2018.
Article in English | MEDLINE | ID: mdl-30406141

ABSTRACT

For an activating immunotherapy such as adjuvants, a compound that can prolong immune stimulation may enhance efficacy. We leveraged data from two prior high throughput screens with NF-κB and interferon reporter cell lines to identify 4H-chromene-3-carbonitriles as a class of compounds that prolonged activation in both screens. We repurchased 23 of the most promising candidates. Out of these compounds we found #1 to be the most effective agent in stimulating the release of cytokines and chemokines from immune cells, including murine primary bone marrow derived dendritic cells. Mechanistically, #1 inhibited tubulin polymerization, and its effect on immune cell activation was abolished in cells mutated in the beta-tubulin gene (TUBB) encoding the site where colchicine binds. Treatment with #1 resulted in mitochondrial depolarization followed by mitogen-activated protein kinase activation. Because tubulin polymerization modulating agents have been used for chemotherapy to treat malignancy and #1 activated cytokine responses, we hypothesized that #1 could be effective for cancer immunotherapy. Intratumoral injection of #1 delayed tumor growth in a murine syngeneic model of head and neck cancer. When combined with PD-1 blockade, tumor growth slowed in the injected tumor nodule and there was an abscopal effect in an uninjected nodule on the contralateral flank, suggesting central antitumor immune activation. Thus, we identified a new class of tubulin depolymerizing agent that acts as both an innate and an adaptive immune activating agent and that limits solid tumor growth when used concurrently with a checkpoint inhibitor.


Subject(s)
Adjuvants, Immunologic/pharmacology , Immunotherapy , Microtubules/metabolism , Neoplasms/immunology , Neoplasms/therapy , Animals , Antibodies, Monoclonal/pharmacology , Benzopyrans/chemistry , Benzopyrans/pharmacology , Cell Line , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Mice, Inbred C57BL , Microtubules/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Nitriles/chemistry , Nitriles/pharmacology , Polymerization , Signal Transduction/drug effects , Structure-Activity Relationship , Survival Analysis , Toll-Like Receptor 4/metabolism , Tubulin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL