Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Pharmaceuticals (Basel) ; 13(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142908

ABSTRACT

Cancer accounts for one of the most complex diseases nowadays due to its multifactorial nature. Despite the vast number of cytotoxic agents developed so far, good therapeutic approaches are not always reached. In recent years, multitarget drugs are gaining great attention against multifactorial diseases in contraposition to polypharmacy. Herein we have accomplished the conjugation of phenolic derivatives with an ample number of organochalcogen motifs with the aim of developing novel antiproliferative agents. Their antioxidant, and antiproliferative properties (against six tumour and one non-tumour cell lines) were analysed. Moreover, in order to predict P-gp-mediated chemoresistance, the P-glycoprotein assay was also conducted in order to determine whether compounds prepared herein could behave as substrates of that glycoprotein. Selenium derivatives were found to be significantly stronger antiproliferative agents than their sulfur isosters. Moreover, the length and the nature of the tether, together with the nature of the organoselenium scaffold were also found to be crucial features in the observed bioactivities. The lead compound, bearing a methylenedioxyphenyl moiety, and a diselenide functionality, showed a good activity (GI50 = 0.88‒2.0 µM) and selectivity towards tumour cell lines (selectivity index: 14‒32); moreover, compounds considered herein were not substrates for the P-gp efflux pump, thus avoiding the development of chemoresistance coming from such mechanism, commonly found for widely-used chemotherapeutic agents.

2.
Am J Med Genet A ; 173(6): 1663-1667, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28256045

ABSTRACT

Tricho-Rhino-Phalangeal syndrome is a rare autosomal dominant genetic disorder caused by mutations in the TRPS1 gene. This malformation syndrome is characterized by distinctive craniofacial features including sparse scalp hair, bulbous tip of the nose, long flat philtrum, thin upper vermilion border, and protruding ears. Skeletal abnormalities include cone-shaped epiphyses at the phalanges, hip malformations, and short stature. In this report, we describe two patients with the physical manifestations and genotype of TRPS type I but with learning/intellectual disability not typically described as part of the syndrome. The first patient has a novel heterozygous two-base-pair deletion of nucleotides at 3198-3199 (c.3198-3199delAT) in the TRPS1 gene causing a translational frameshift and subsequent alternate stop codon. The second patient has a 3.08 million base-pair interstitial deletion at 8q23.3 (113,735,487-116,818,578), which includes the TRPS1 gene and CSMD3. Our patients have characteristic craniofacial features, Legg-Perthes syndrome, various skeletal abnormalities including cone shaped epiphyses, anxiety (first patient), and intellectual disability, presenting unusual phenotypes that add to the clinical spectrum of the disease.


Subject(s)
DNA-Binding Proteins/genetics , Dysostoses/genetics , Intellectual Disability/genetics , Legg-Calve-Perthes Disease/genetics , Osteochondrodysplasias/genetics , Transcription Factors/genetics , Adolescent , Adult , Dysostoses/diagnostic imaging , Dysostoses/physiopathology , Humans , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Legg-Calve-Perthes Disease/diagnostic imaging , Legg-Calve-Perthes Disease/physiopathology , Magnetic Resonance Imaging , Male , Osteochondrodysplasias/diagnostic imaging , Osteochondrodysplasias/physiopathology , Repressor Proteins , Sequence Deletion , Young Adult
3.
Mol Genet Metab ; 106(1): 55-61, 2012 May.
Article in English | MEDLINE | ID: mdl-22424739

ABSTRACT

BACKGROUND: Short-chain acyl-CoA dehydrogenase deficiency (SCADD) is an autosomal recessive inborn error of mitochondrial fatty acid oxidation with highly variable biochemical, genetic, and clinical characteristics. SCADD has been associated with accumulation of butyryl-CoA byproducts, including butyrylcarnitine (C4), butyrylglycine, ethylmalonic acid (EMA), and methylsuccinic acid (MS) in body fluid and tissues. Differences in genotype frequencies have been shown between patients diagnosed clinically versus those diagnosed by newborn screening. Moreover, while patients diagnosed clinically have a variable clinical presentation including developmental delay, ketotic hypoglycemia, epilepsy and behavioral disorders, studies suggest patients diagnosed by newborn screening are largely asymptomatic. Scant information is published about the biochemical, genetic and clinical outcome of SCADD patients diagnosed by newborn screening. METHODS: We collected California newborn screening, follow-up biochemical levels, and ACADS mutation data from September, 2005 through April, 2010. We retrospectively reviewed available data on SCADD cases diagnosed by newborn screening for clinical outcomes. RESULTS: During the study period, 2,632,058 newborns were screened and 76 confirmed SCADD cases were identified. No correlations between initial C4 value and follow-up biochemical markers (C4, EMA or MS levels) were found in the 76 cases studied. We found significant correlation between urine EMA versus MS, and correlation between follow-up C4 versus urine EMA. Of 22 cases where ACADS gene sequencing was performed: 7 had two or more deleterious mutations; 8 were compound heterozygotes for a deleterious mutation and common variant; 7 were homozygous for the common variant c.625G>A; and 1 was heterozygous for c.625G>A. Significant increases in mean urine EMA and MS levels were noted in patients with two or more deleterious mutations versus mutation heterozygotes or common polymorphism homozygotes. Clinical outcome data was available in 31 patients with follow-up extending from 0.5 to 60 months. None developed epilepsy or behavioral disorders, and three patients had isolated speech delay. Hypoglycemia occurred in two patients, both in the neonatal period. The first patient had concomitant meconium aspiration; the other presented with central apnea, poor feeding, and hypotonia. The latter, a c.625G>A homozygote, has had persistent elevations in both short- and medium-chain acylcarnitines; diagnostic workup in this case is extensive and ongoing. CONCLUSIONS: This study examines the largest series to date of SCADD patients identified by newborn screening. Our results suggest that confirmatory tests may be useful to differentiate patients with common variants from those with deleterious mutations. This study also provides evidence to suggest that, even when associated with deleterious mutations, SCADD diagnosed by newborn screening presents largely as a benign condition.


Subject(s)
Acyl Coenzyme A , Lipid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/genetics , Neonatal Screening , Acyl Coenzyme A/blood , Acyl Coenzyme A/genetics , Acyl Coenzyme A/urine , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase/genetics , California , Carnitine/analogs & derivatives , Carnitine/blood , Carnitine/urine , Female , Follow-Up Studies , Humans , Infant, Newborn , Male , Malonates/blood , Malonates/urine , Sequence Deletion , Succinates/blood , Succinates/urine
4.
Neuromuscul Disord ; 19(5): 352-6, 2009 May.
Article in English | MEDLINE | ID: mdl-19342235

ABSTRACT

The dystroglycanopathies comprise a clinically and genetically heterogeneous group of muscular dystrophies characterized by deficient glycosylation of alpha-dystroglycan. Mutations in the fukutin (FKTN) gene have primarily been identified among patients with classic Fukuyama congenital muscular dystrophy (FCMD), a severe form of dystroglycanopathy characterized by CMD, cobblestone lissencephaly and ocular defects. We describe two brothers of Caucasian and Japanese ancestry with normal intelligence and limb-girdle muscular dystrophy (LGMD) due to compound heterozygous FKTN mutations. Muscle biopsy showed a dystrophy with selectively reduced alpha-dystroglycan glycoepitope immunostaining. Immunoblots revealed hypoglycosylation of alpha-dystroglycan and loss of laminin binding. FKTN gene sequencing identified two variants: c.340G>A and c.527T>C, predicting missense mutations p.A114T and p.F176S, respectively. Our results provide further evidence for ethnic and allelic heterogeneity and the presence of milder phenotypes in FKTN-dystroglycanopathy despite a substantial degree of alpha-dystroglycan hypoglycosylation in skeletal muscle.


Subject(s)
Genetic Predisposition to Disease/genetics , Membrane Proteins/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation/genetics , Age of Onset , Asian/genetics , Child , Child, Preschool , DNA Mutational Analysis , Dystroglycans/metabolism , Genetic Markers/genetics , Genetic Predisposition to Disease/ethnology , Genotype , Glycosylation , Humans , Intellectual Disability/genetics , Laminin/metabolism , Male , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Dystrophies, Limb-Girdle/ethnology , Muscular Dystrophies, Limb-Girdle/metabolism , Mutation, Missense/genetics , White People
SELECTION OF CITATIONS
SEARCH DETAIL
...