Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Tissue Res ; 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38878176

ABSTRACT

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.

2.
Respir Investig ; 62(1): 90-97, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38007853

ABSTRACT

BACKGROUND: Transforming growth factor-ß (Tgf-ß) plays an important role in the pathogenesis of asthma through the regulation of T cells and airway epithelium. Its functions in alveolar macrophage (AM) during allergic airway inflammation remain unknown. METHODS: A murine asthma model was induced with ovalbumin (ova) in TßRICA/Fsp1-Cre transgenic mice expressing constitutively active Tgf-ß receptor type I (TßRICA) under the control of Fsp1-Cre transgene. Cells in the bronchoalveolar lavage (BAL) were collected to study immune cell infiltration in the lungs. Cytokine levels in BAL fluid were measured by enzyme-linked immunoassay (ELISA). Lungs were sectioned and stained with hematoxylin and eosin, periodic acid-Schiff, and trichrome for histopathologic evaluation. AMs were assessed by flow cytometry and were sorted for quantitative polymerase chain reaction analysis. RESULTS: Our data indicated that TßRICA transcripts were induced in AMs of TßRICA/Fsp1-Cre mice. Following the ova challenges, TßRICA/Fsp1-Cre mice exhibited reduced cellular infiltration of the airway, reduced pulmonary fibrosis, and reduced bronchial mucus secretion as compared to ova-challenged wild-type mice. An alternatively activated macrophage (M2) polarization was significantly elevated in the lungs of ova-challenged TßRICA/Fsp1-Cre mice as reflected by increased numbers of AMs expressing M2 subtype marker, CD163, in the lungs and enhanced expression of CCR2 and CD206 in AMs. Moreover, TßRICA/Fsp1-Cre AMs showed augmented expression of transcription factors, Foxo1, and IRF4, which are known to be positive regulators for M2 polarization. CONCLUSIONS: Expression of TßRICA in AMs promoted M2 polarization and ameliorated allergic airway inflammation in an ova-induced asthma mouse model.


Subject(s)
Asthma , Macrophages, Alveolar , Mice , Humans , Animals , Ovalbumin/adverse effects , Asthma/metabolism , Lung/pathology , Inflammation , Bronchoalveolar Lavage Fluid , Disease Models, Animal , Mice, Inbred BALB C
3.
J Fish Dis ; 47(3): e13905, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38073005

ABSTRACT

The presence of endogenous viral elements (EVE) in the penaeid shrimp genome has been recently reported and suggested to be involved in the host recognition of viral invaders. Our previous report of a search for EVE of infectious hypodermal and haematopoietic necrosis virus (IHHNV-EVE) in the Thai Penaeus monodon whole genome sequence project (GenBank accession no. JABERT000000000) confirmed the presence of three clusters of EVE derived from IHHNV in the shrimp genome. This study aimed to compare an immunohistochemistry method (IHC) and a PCR method to detect infectious IHHNV infection in shrimp. First, specimens collected from farms were checked for IHHNV using three PCR methods; two methods were recommended by WOAH (309 and 389 methods), and a newly established long-range PCR for IHHNV (IHHNV-LA PCR) targeting almost the whole genome (>90%) of IHHNV. Among 29 specimens tested, 24 specimens were positive for WOAH methods (at least one method). Among 24 WOAH-positive specimens (WOAH+), there were 18 specimens with positive IHHNV-LA PCR method (WOAH+/LA+), six specimens with negative IHHNV-LA PCR method (WOAH+/LA-). Six specimens were negative for all methods (WOAH-/LA-). The positive signals detected by IHC method were found only in the specimens with WOAH+/LA+. The results suggest that the WOAH+/LA- specimens were not infected with IHHNV, and the positive WOAH method might result from the EVE-IHHNV. The study recommends combining the IHHNV-LA PCR method and IHC with positive PCR results from WOAH's recommended methods to confirm IHHNV infection.


Subject(s)
Densovirinae , Fish Diseases , Penaeidae , Animals , Polymerase Chain Reaction/veterinary , Immunohistochemistry , Fish Diseases/diagnosis
4.
Sci Rep ; 13(1): 18881, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37919393

ABSTRACT

Tryptophol (TOH), a fungal quorum-sensing molecule, that possesses anti-fungal activities for controlling the growth of human pathogenic fungi. In the present study, we developed TOH-containing emulgel formulations and examined the antifungal activities and potential use as topical treatments on the skin. The results showed that TOH-containing emulgel at 1000 µM has excellent physical characteristics as homogenous, stability, and inhibits the growth of 30 species of human pathogenic fungi in vitro. TOH-containing emulgel did not cause skin irritation in mouse model of irritation and in healthy human volunteers. Moreover, an increase in skin hydration and a decrease in trans-epidermal water loss (TEWL) were observed after TOH-containing emulgel treatment on human skin. Our findings indicated that TOH-containing emulgel can be utilize as an antifungal agent for topical treatment against fungal infections on the skin.


Subject(s)
Indoles , Skin , Mice , Animals , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Administration, Topical
5.
Cytotechnology ; 73(2): 141-157, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33927472

ABSTRACT

The giant freshwater prawn Macrobrachium rosenbergii is one of the most important aquaculture species in Southeast Asia. In this study, in vitro culture of its hematopoietic tissue cells was achieved and characterized for use as a tool to study its pathogens that cause major farm losses. By transmission electron microscopy, the ultrastructure of the primary culture cells was similar to that of cells lining intact hematopoietic tissue lobes. Proliferating cell nuclear antigen (PCNA) (a marker for hematopoietic stem cell proliferation) was detected in some of the cultured cells by polymerase chain reaction (PCR) testing and flow cytometry. Using a specific staining method to detect phenoloxidase activity and using PCR to detect expression markers for semigranular and granular hemocytes (e.g., prophenoloxidase activating enzyme and prophenoloxidase) revealed that some of the primary cells were able to differentiate into mature hemocytes within 24 h. These results showed that some cells in the cultures were hematopoietic stem cells that could be used to study other interesting research topics (e.g. host pathogen interactions and development of an immortal hematopoietic stem cell line).

6.
Fish Shellfish Immunol ; 110: 10-22, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33383176

ABSTRACT

In crustacean, hemocytes are known as crucial components of crustaceans' innate immunity against pathogens. Drastic hemocytes reduction during infectious disease is apparently related to disease severity and calls for a health status evaluation and aquaculture management. The molecular pathogenesis of hemocytes loss during bacterial infection was elucidated with VPAHPND challenged in M. rosenbergii. We report herein a correlation between hemocyte loss and the pathogenicity and aggressive immune response in hematopoietic tissues of moribund M. rosenbergii. In this study, adult freshwater prawn was administered an LC50 dose of VPAHPND; bacterial clearance ensued, and success was reached within 24 h. Hemocytes increased in survival, yet drastically decreased in moribund prawn. Pathological analysis of hematopoietic tissue of moribund prawn showed apparent abnormal signs, including the presence of bacteria, a small number of mitotic cells, cellular swelling, loosening of connective tissue, and karyorrhectic nuclei cells. A significant upregulation of a core apoptotic machinery gene, caspase-3, was detected in hematopoietic tissue of moribund shrimp, but not in those of Escherichia coli DH5α (non-pathogenic bacteria) and VPAHPND survival prawn. The highest level was found in the moribund group, which confirms the occurrence of apoptosis in this hematopoietic tissue. Further, our results suggest that hematopoietic tissue damage may arise from inflammation triggered by an aggressive immune response. Immune activation was indicated by the comparison of immune-related gene expression between controls, E. coli (DH5α)-infected (non-pathogenic), and VPAHPND-infected survival groups with moribund prawn. RT-PCR revealed a significant upregulation of all genes in hematopoietic tissues and hemocytes within 6-12 h and declined by 24 h. This evident related to the almost VPAHPND are clearance in survival and E. coli (DH5α) challenged group in contrast with drastic high expression was determined in moribund group. We conclude that a reduction of renewing circulating hemocytes in fatally VPAHPND-infected prawn was caused by an acute self-destructive immune response by hematopoietic cells.


Subject(s)
Bacteria/pathogenicity , Gene Expression/immunology , Hematopoietic System/immunology , Immunity, Innate/genetics , Palaemonidae/immunology , Vibrio parahaemolyticus/physiology , Animals , Hematopoietic System/microbiology , Hematopoietic System/pathology , Hemocytes/immunology , Homeostasis , Palaemonidae/microbiology , Virulence
7.
J Exp Biol ; 222(Pt 10)2019 05 17.
Article in English | MEDLINE | ID: mdl-31028105

ABSTRACT

Unlike that of vertebrates, the penaeid shrimp stomach is of ectodermic origin and is thus covered by a cuticle that is sloughed upon molting. It is composed of two chambers, here called the anterior and posterior stomach chambers, ASC and PSC, respectively. The PSC contains a filtration structure variously called a pyloric filter, filter press, gastric filter or gastric sieve (GS), and the last of these will be used here. The GS resembles an elongated, inverted-V, dome-like, chitinous structure with a midline ridge that is integral to the ventral base of the PSC. The dome surface is covered with a carpet-like layer of minute, comb-like setae bearing laterally branching setulae. This carpet serves as a selective filter that excludes large partially digested food particles but allows smaller particles and soluble materials to enter hepatopancreatic ducts that conduct them into the shrimp hepatopancreas (HP), where further digestion and absorption of nutrients takes place. Although the GS function is well known, its exclusion limit for particulate material has not been clearly defined. Using histological and ultra-structure analysis, we show that the GS sieve pore diameter is approximately 0.2-0.7 µm in size, indicating a size exclusion limit of substantially less than 1 µm. Using fluorescent microbeads, we show that particles of 1 µm diameter could not pass through the GS but that particles of 0.1 µm diameter did pass through to accumulate in longitudinal grooves and move on to the HP, where some were internalized by tubule epithelial cells. We found no significant difference in these sizes between the species Penaeus monodon and Penaeus vannamei or between juveniles and adults in P. vannamei This information will be of value for the design of particulate feed ingredients such as nutrients, therapeutic drugs and toxin-absorbing materials that may selectively target the stomach, intestine or HP of cultivated shrimp.


Subject(s)
Nutrients/metabolism , Penaeidae/metabolism , Animals , Microscopy, Electron, Scanning , Penaeidae/ultrastructure , Stomach/ultrastructure
8.
Fish Shellfish Immunol ; 88: 415-423, 2019 May.
Article in English | MEDLINE | ID: mdl-30872029

ABSTRACT

The hematopoietic organ (HO) of the giant freshwater prawn Macrobrachium rosenbergii is a discrete, whitish mass located in the epigastric region of the cephalothorax, posterior to the brain. It is composed of hematopoietic cells arranged in a thick layer of numerous lobules that surround a central hemal sinus from which they are separated by a thin sheath. At the center of the sinus is the muscular cor frontale. The lobules extend radially outward from the sinus in three developmental zones. Basal Zone 1 nearest the sinus contains large hematopoietic stem cells with euchromatic nuclei that stain positive for proliferation cell nuclear antigen (PCNA). Zone 2 contains smaller, actively dividing cells as indicated by positive 5-bromo-20-deoxyuridine (BrdU) staining. Distal Zone 3 contains small, loosely packed cells with heterochromatic nuclei, many cytoplasmic granules and vesicles indicating that they will eventually differentiate into hemocytes and enter circulation. Three main arteries, namely the ophthalmic and the 2 branches of the antennary, connect the heart to the HO. Use of India ink and 0.1 µm fluorescent micro-beads injected into the heart revealed that the cor frontale could immediately remove foreign particles from hemolymph by filtration. Fluorescent beads were also detected in the hematopoietic tissue at 30 min after injection, indicating that it could be penetrated by foreign particles. However, the fluorescent signal completely disappeared from the whole HO after 4 h, indicating its role in removal of foreign particles. In conclusion, the present study demonstrated for the first time the detailed histological structures of the HO of M. rosenbergii and its relationship to hematopoiesis and removal of foreign particles from hemolymph.


Subject(s)
Hematopoietic System/cytology , Hematopoietic System/immunology , Palaemonidae/immunology , Animals , Arthropod Proteins/chemistry , Hematopoietic Stem Cells , Hemocytes/immunology , Hemolymph , Palaemonidae/anatomy & histology , Phagocytosis , Proliferating Cell Nuclear Antigen/chemistry
9.
Fish Shellfish Immunol ; 86: 756-763, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30553890

ABSTRACT

White tail disease caused by Macrobrachium rosenbergii nodavirus (MrNV) infection takes place only in nauplii, not adults, of M. rosenbergii prawn. Hemocyte homeostasis and immune-related functions derived from the hematopoietic tissue (Hpt) in adult prawn are presumed to play roles in resisting viral infection. To elucidate the role of the Hpt cell response to MrNV, a comparative transcriptome analysis was performed with MrNV-infected prawn at various time intervals. The results showed that there were 462 unigenes that were differentially expressed between mock and infected samples. BlastX sequence analysis revealed that two proteins, crustacean hematopoietic factor (CHF) and cell growth-regulating zinc finger protein (Lyar), are involved in hemocyte hematopoiesis and are up-regulated during MrNV infection. In fact, genes involved in cell growth regulation and immunity were highly expressed at 6 h and decreased within 24 h post-infection. Localization studies in the Hpt tissue revealed the presence of anti-lipopolysaccharide factor (ALF) and CHF mRNAs in Hpt cells. Considering these findings, we concluded that resistance to MrNV infection in adult prawn is due to an increase in humoral immune factors and the acceleration of hemocyte homeostasis by the dual roles of the Hpt organ in M. rosenbergii.


Subject(s)
Gene Expression/immunology , Hematopoiesis/genetics , Nodaviridae/physiology , Palaemonidae/immunology , Animals , Hemocytes/immunology , Hemocytes/virology , Palaemonidae/genetics , Palaemonidae/virology
10.
Heliyon ; 3(5): e00305, 2017 May.
Article in English | MEDLINE | ID: mdl-28560358

ABSTRACT

While Transforming growth factor-ßs (Tgf-ßs) have been known to play an important role in liver fibrosis through an activation of Hepatic Stellate Cells (HSC), their fibrotic role on hepatocytes in liver damage has not been addressed thoroughly. To shed more light on the hepatocyte-specific role of Tgf-ß signaling during liver fibrosis, we generated transgenic mice expressing constitutively active Tgf-ß type I receptor Alk5 under the control of albumin promoter. Uninjured mice with increased Tgf-ß/Alk5 signaling in hepatocytes (caAlk5/Alb-Cre mice) did not show characteristics related to hepatocyte death, fibrosis and inflammation. When subjected to thioacetamide (TAA) treatment, caAlk5/Alb-Cre mice exhibited more severe liver injury, when compared to control littermates. After TAA administration for 12 weeks, an increase in pathological changes was evident in caAlk5/Alb-Cre livers, with higher number of infiltrating cells in the portal and periportal area. Immunohistochemistry for F4/80, myeloperoxidase and CD3 showed that there was an increased accumulation of macrophages, neutrophils and T-lymphocytes, respectively, in caAlk5/Alb-Cre livers. Coincidently, we observed an exacerbated liver damage as seen by increases in serum aminotransferase level and number of apoptotic hepatocytes in caAlk5/Alb-Cre mice. Sirius staining of collagen demonstrated that the fibrotic response was worsened in caAlk5/Alb-Cre mice. The enhanced fibrosis in mutant livers was associated with marked production of α-SMA-positive myofibroblast. Hepatic expression of genes indicative of HSC activation was greater in caAlk5/Alb-Cre mice. In conclusion, our data indicated that elevation of Tgf-ß signaling via Alk5 in hepatocytes is not sufficient to induce liver pathology but plays an important role in amplifying TAA-induced liver damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...