Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37754814

ABSTRACT

Anomalous aortic origin of a coronary artery (AAOCA) is a rare congenital heart condition with fixed and dynamic stenotic elements, potentially causing ischemia. Invasive coronary angiography under stress is the established method for assessing hemodynamics in AAOCA, yet it is costly, technically intricate, and uncomfortable. Computational fluid dynamics (CFD) simulations offer a noninvasive alternative for patient-specific hemodynamic analysis in AAOCA. This systematic review examines the role of CFD simulations in AAOCA, encompassing patient-specific modeling, noninvasive imaging-based boundary conditions, and flow characteristics. Screening articles using AAOCA and CFD-related terms prior to February 2023 yielded 19 publications, covering 370 patients. Over the past four years, 12 (63%) publications (259 patients) employed dedicated CFD models, whereas 7 (37%) publications (111 patients) used general-purpose CFD models. Dedicated CFD models were validated for fixed stenosis but lacked dynamic component representation. General-purpose CFD models exhibited variability and limitations, with fluid-solid interaction models showing promise. Interest in CFD modeling of AAOCA has surged recently, mainly utilizing dedicated models. However, these models inadequately replicate hemodynamics, necessitating novel CFD approaches to accurately simulate pathophysiological changes in AAOCA under stress conditions.

2.
Int J Numer Method Biomed Eng ; 36(8): e3350, 2020 08.
Article in English | MEDLINE | ID: mdl-32412654

ABSTRACT

A computational fluid dynamics simulation workflow was developed to analyze the upper airway of patients with obstructive sleep apnea, which is a potentially serious sleep-related breathing disorder. A single characteristic parameter was introduced to assess the severity of sleep apnea on the basis of the numerical results. Additionally, a fluid-structure interaction simulation was applied to study in detail the behavior of compliant pharyngeal walls. An experimental setup was designed to validate the patient-specific upper airway modeling. The suitability of the characteristic parameter was demonstrated in a retrospective analysis of radiological and clinical data of 58 patients as well as a prospective analysis of 22 patients. The simulation workflow was successfully used as part of an ongoing clinical investigation to predict the outcome of the obstructive sleep apnea treatment with a mandibular advancement device. The simulation results provided essential information about the critical region in the pharynx for the selection of an appropriate treatment and readily demonstrated the effect of mandibular protrusion on the air flow in the upper airway.


Subject(s)
Mandibular Advancement , Sleep Apnea, Obstructive , Humans , Occlusal Splints , Retrospective Studies , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/therapy , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL