Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Micromachines (Basel) ; 15(2)2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38398920

ABSTRACT

Perovskite solar cells (PSCs) are gaining popularity due to their high efficiency and low-cost fabrication. In recent decades, noticeable research efforts have been devoted to improving the stability of these cells under ambient conditions. Moreover, researchers are exploring new materials and fabrication techniques to enhance the performance of PSCs under various environmental conditions. The mechanical stability of flexible PSCs is another area of research that has gained significant attention. The latest research also focuses on developing tin-based PSCs that can overcome the challenges associated with lead-based perovskites. This review article provides a comprehensive overview of the latest advances in materials, fabrication techniques, and stability enhancement strategies for PSCs. It discusses the recent progress in perovskite crystal structure engineering, device construction, and fabrication procedures that has led to significant improvements in the photo conversion efficiency of these solar devices. The article also highlights the challenges associated with PSCs such as their poor stability under ambient conditions and discusses various strategies employed to enhance their stability. These strategies include the use of novel materials for charge transport layers and encapsulation techniques to protect PSCs from moisture and oxygen. Finally, this article provides a critical assessment of the current state of the art in PSC research and discusses future prospects for this technology. This review concludes that PSCs have great potential as a low-cost alternative to conventional silicon-based solar cells but require further research to improve their stability under ambient conditions in view of their definitive commercialization.

2.
ACS Omega ; 8(45): 42264-42274, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38024754

ABSTRACT

Calcium phosphate glasses (CPGs) are acquiring great importance in the biomedical field because of their thermomechanical and bioresorbable properties. In this study, optically transparent copper (1 mol %)-doped calcium phosphate glasses (CPGs_Cu) were prepared through the melt-quenching method, and their biocompatibility and antibacterial and antiviral properties were evaluated and compared with undoped CPGs. Biocompatibility was evaluated on murine fibroblast NIH-3T3 cells as a preliminary study of cytocompatibility. The in vitro tests were performed through indirect and direct cytotoxicity analyses by MTT and Alamar Blue assays and supported by electron microscopy observations. Microbiological analyses were performed against the most common Gram-negative and Gram-positive pathogens that cause nosocomial infections: Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and the methicillin-resistant Staphylococcus aureus strain. In addition, the bioglass samples were exposed to SARS-CoV-2 to assess their effects on viral survival. The obtained results assessed the biocompatibility of both bioglass types and their ability to reduce the viral load and trap the virus. In addition, Cu2+-doped bioglass was found to be antibacterial despite its low content (1 mol %) of copper, making this a promising candidate material for biomedical applications, e.g., surgery probes, drug delivery, and photodynamic therapy.

3.
Materials (Basel) ; 16(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297033

ABSTRACT

In this study, a single-step nanosecond laser-induced generation of micro-optical features is demonstrated on an antibacterial bioresorbable Cu-doped calcium phosphate glass. The inverse Marangoni flow of the laser-generated melt is exploited for the fabrication of microlens arrays and diffraction gratings. The process is realized in a matter of few seconds and, by optimizing the laser parameters, micro-optical features with a smooth surface are obtained showing a good optical quality. The tunability of the microlens' dimensions is achieved by varying the laser power, allowing the obtaining of multi-focal microlenses that are of great interest for three-dimensional (3D) imaging. Furthermore, the microlens' shape can be tuned between hyperboloid and spherical. The fabricated microlenses exhibited good focusing and imaging performance and the variable focal lengths were measured experimentally, showing good agreement with the calculated values. The diffraction gratings obtained by this method showed the typical periodic pattern with a first-order efficiency of about 5.1%. Finally, the dissolution characteristics of the fabricated micropatterns were studied in a phosphate-buffered saline solution (PBS, pH = 7.4) demonstrating the bioresorbability of the micro-optical components. This study offers a new approach for the fabrication of micro-optics on bioresorbable glass, which could enable the manufacturing of new implantable optical sensing components for biomedical applications.

4.
Opt Express ; 31(10): 15449-15460, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37157646

ABSTRACT

Self-assembled nanogratings, inscribed by femtosecond laser writing in volume, are demonstrated in multicomponent alkali and alkaline earth containing alumino-borosilicate glasses. The laser beam pulse duration, pulse energy, and polarization, were varied to probe the nanogratings existence as a function of laser parameters. Moreover, laser-polarization dependent form birefringence, characteristic of nanogratings, was monitored through retardance measurements using polarized light microscopy. Glass composition was found to drastically impact the formation of nanogratings. For a sodium alumino-borosilicate glass, a maximum retardance of 168 nm (at 800 fs and 1000 nJ) could be measured. The effect of composition is discussed based on SiO2 content, B2O3/Al2O3 ratio, and the Type II processing window is found to decrease as both (Na2O + CaO)/Al2O3 and B2O3/Al2O3 ratios increase. Finally, an interpretation in the ability to form nanogratings from a glass viscosity viewpoint, and its dependency with respect to the temperature, is demonstrated. This work is brought into comparison with previously published data on commercial glasses, which further indicates the strong link between nanogratings formation, glass chemistry, and viscosity.

5.
Adv Mater ; 35(20): e2210446, 2023 May.
Article in English | MEDLINE | ID: mdl-36749876

ABSTRACT

The formation of elemental trigonal tellurium (t-Te) on tellurite glass surfaces exposed to femtosecond laser pulses is discussed. Specifically, the underlying elemental crystallization phenomenon is investigated by altering laser parameters in common tellurite glass compositions under various ambient conditions. Elemental crystallization of t-Te by a single femtosecond laser pulse is unveiled by high-resolution imaging and analysis. The thermal diffusion model reveals the absence of lattice melting upon a single laser pulse, highlighting the complexity of the phase transformation. The typical cross-section displays three different crystal configurations over its depth, in which the overall thickness increases with each subsequent pulse. The effect of various controlled atmospheres shows the suppressing nature of the elemental crystallization, whereas the substrate temperature shows no significant impact on the nucleation of t-Te nanocrystals. This research gives new insight into the elemental crystallization of glass upon femtosecond laser irradiation and shows the potential to fabricate functional transparent electronic micro/nanodevices.

6.
Nanomaterials (Basel) ; 12(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36080022

ABSTRACT

Nanogratings (NGs) are self-assembled subwavelength and birefringent nanostructures created by femtosecond laser direct writing (FLDW) in glass, which are of high interest for photonics, sensing, five-dimensional (5D) optical data storage, or microfluidics applications. In this work, NG formation windows were investigated in nine commercial glasses and as a function of glass viscosity and chemical composition. The NG windows were studied in an energy-frequency laser parameter landscape and characterized by polarizing optical microscopy and scanning electron microscopy (SEM). Pure silica glass (Suprasil) exhibits the largest NG window, whereas alkali borosilicate glasses (7059 and BK7) present the smallest one. Moreover, the NG formation windows progressively reduced in the following order: ULE, GeO2, B33, AF32, and Eagle XG. The NG formation window in glasses was found to decrease with the increase of alkali and alkaline earth content and was correlated to the temperature dependence of the viscosity in these glasses. This work provides guidelines to the formation of NGs in commercial oxide glasses by FLDW.

7.
ACS Appl Bio Mater ; 5(7): 3219-3229, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35729847

ABSTRACT

Biobased composites with peculiar properties offer an attractive route for producing environmentally friendly materials. The reinforcement for poly(butylene adipate-co-terephthalate) (PBAT), based on zein-titanium dioxide (TiO2) complex (ZTC) microparticles, is presented and used to produce composite filaments, successfully 3-dimensionally (3D) printed by fused deposition modeling (FDM). The outcome of ZTC addition, ranging from 5 to 40 wt %, on the thermo-mechanical properties of composite materials was analyzed. Results reveal that storage modulus increased with increasing the ZTC content, leading to a slight increase in the glass transition temperature. The creep compliance varies with the ZTC concentration, denoting a better resistance to deformation under constant stress conditions for composites with higher complex content. Scanning electron microscopy was used to assess the quality of interphase adhesion between PBAT and ZTC, showing good dispersion and distribution of complex microparticles in the polymer matrix. Infrared spectroscopy confirmed the formation of a valid interface due to the formation of hydrogen bonds between filler and polymer matrix. Preliminary tests on the biocompatibility of these materials were also performed, showing no cytotoxic effects on cell viability. Finally, the 3D printability of biobased composites was demonstrated by realizing complex structures with a commercial FDM printer.


Subject(s)
Polyesters , Polymers , Excipients , Microscopy, Electron, Scanning , Polyesters/chemistry , Polymers/chemistry , Printing, Three-Dimensional
8.
Polymers (Basel) ; 14(9)2022 May 06.
Article in English | MEDLINE | ID: mdl-35567068

ABSTRACT

In this work, we thoroughly investigate the effects of the incorporation of a phosphate glass micrometric powder on the morphology, as well as on the thermal, optical, mechanical and flame retardant properties of UV-LED curable acrylic films. To this aim, the filler loading was changed within 10 and 50 wt.%. UV-LED initiated curing was selected as a fast and reliable system, as the standard UV-curing process was not suitable because of the presence of the glass powder that decreased the quantum efficiency during the UV exposure, hence preventing the transformation of the liquid system into a solid network. The glass powder slightly increased the glass transition temperature of the acrylic network, hence showing a limited effect on the chain segments mobility; besides, increasing filler loadings were responsible for a progressive decrease of the transparency of films, irrespective of a marginal effect on their refractive index. Conversely, the presence of increasing amounts of phosphate glass improved the thermal and thermo-oxidative stability of the cured products. Besides, phosphate glass was capable of remarkably enhancing the flame retardance of the acrylic network at 50 wt.% loading, which achieved self-extinction in vertical flame spread tests (and was V-0 rated). This formulation, as assessed by forced-combustion tests, also displayed a remarkable decrease of peak of Heat Release Rate and Total Heat Release (by 44 and 33%, respectively) and of Total Smoke Release and Specific Extinction Area (by 53 and 56%, respectively). Further, the filler promoted an increase of the stiffness and surface hardness of the films, at the expense of a decrease in ductility. All these findings may justify the potential use of these composite films as flame retardant coatings for different flammable substrates.

9.
Anal Bioanal Chem ; 413(24): 6171-6182, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34278523

ABSTRACT

Ion-exchange in molten nitrate salts containing metal ions (i.e. silver, copper, etc.) represents a well-established technique able to modify the chemical-physical properties of glass materials. It is widely used not only in the field of integrated optics (IO) but also, more recently, in plasmonics due to the possibility to induce the formation of metal nanoparticles in the glass matrix by an ad hoc thermal post-process. In this work, the application of this technology for the realisation of low-cost and stable surface-enhanced Raman scattering (SERS) active substrates, based on soda-lime glass microrods, is reported. The microrods, with a radius of a few tens of microns, were obtained by cutting the end of an ion-exchanged soda-lime fibre for a length less than 1 cm. As ion source, silver nitrate was selected due to the outstanding SERS properties of silver. The ion-exchange and thermal annealing post-process parameters were tuned to expose the embedded silver nanoparticles on the surface of the glass microrods, avoiding the use of any further chemical etching step. In order to test the combined SERS/fluorescence response of these substrates, labelled molecular beacons (MBs) were immobilised on their surface for deoxyribonucleic acid (DNA) detection. Our experiments confirm that target DNA is attached on the silver nanoparticles and its presence is revealed by both SERS and fluorescence measurements. These results pave the way towards the development of low-cost and stable hybrid fibres, in which SERS and fluorescence interrogation techniques are combined in the same optical device.


Subject(s)
DNA/analysis , Glass , Spectrum Analysis, Raman/methods , DNA/chemistry , Fluorescence , Ion Exchange , Microscopy, Atomic Force , Nucleic Acid Hybridization
10.
Colloid Polym Sci ; 299(3): 509-521, 2021.
Article in English | MEDLINE | ID: mdl-33785978

ABSTRACT

New perfluoropolyalkylether (PFPAE) monomers, chain extended with different alkyl groups and functionalized with vinyl ether or epoxide end-groups, were employed, together with trimethylolpropane trivinyl ether or trimethylolpropane triglycidyl ether, to produce fluorinated copolymers. The photoinduced cationic polymerization was investigated, and the PFPAE-based copolymer properties were thoroughly characterized. Interesting surface properties and two different values of refractive index were observed: thus, these fluorinated copolymers can be suitable materials for the manufacture of self-cleaning coatings and optical waveguides.

11.
ACS Appl Mater Interfaces ; 13(9): 10719-10727, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33645209

ABSTRACT

This work reports the study of ZnO-based anodes for the photoelectrochemical regeneration of the oxidized form of nicotinamide adenine dinucleotide (NAD+). The latter is the most important coenzyme for dehydrogenases. However, the high costs of NAD+ limit the use of such enzymes at the industrial level. The influence of the ZnO morphologies (flower-like, porous film, and nanowires), showing different surface area and crystallinity, was studied. The detection of diluted solutions (0.1 mM) of the reduced form of the coenzyme (NADH) was accomplished by the flower-like and the porous films, whereas concentrations greater than 20 mM were needed for the detection of NADH with nanowire-shaped ZnO-based electrodes. The photocatalytic activity of ZnO was reduced at increasing concentrations of NAD+ because part of the ultraviolet irradiation was absorbed by the coenzyme, reducing the photons available for the ZnO material. The higher electrochemical surface area of the flower-like film makes it suitable for the regeneration reaction. The illumination of the electrodes led to a significant increase on the NAD+ regeneration with respect to both the electrochemical oxidation in dark and the only photochemical reaction. The tests with formate dehydrogenase demonstrated that 94% of the regenerated NAD+ was enzymatically active.


Subject(s)
Electrochemical Techniques/instrumentation , Electrodes , NAD/chemistry , Photochemistry/instrumentation , Zinc Oxide/chemistry , Formate Dehydrogenases/chemistry , Fungal Proteins/chemistry , Nanowires/chemistry , Nanowires/radiation effects , Oxidation-Reduction , Saccharomycetales/enzymology , Ultraviolet Rays , Zinc Oxide/radiation effects
12.
Opt Lett ; 45(18): 5291-5294, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932514

ABSTRACT

We present an experimental characterization of the amplification of sub-nanosecond duration laser pulses at a wavelength of 1538 nm in short custom-made Er:Yb phosphate glass fibers with different core diameters. The fibers vary in their diameter from 100 µm (highly multi-mode) down to 12 µm (single-mode). The peak power, energy per pulse, and spectral shape of the amplified signal are presented. With our input pulses, the measurements show that the large core diameter fibers do not increase the amplification of the 1538 nm signal. We believe this is due to the high re-absorption of the Er3+ ions in the phosphate fiber. The optimal fiber geometry was found to have a core diameter of 20 µm with a length of 14 cm. The maximum peak power is 8.25 kW, corresponding to a net gain of 10.9 dB, with a pulse duration of 0.7 ns and a repetition rate of 40 kHz.

13.
Materials (Basel) ; 13(10)2020 May 18.
Article in English | MEDLINE | ID: mdl-32443609

ABSTRACT

This paper reports the results of the designing, manufacturing and characterization of a jewel obtained by means of coupling the dogmas of industrial design to the analytical engineering approach. The key role in the design of the jewel was played by an in-house synthesized Neodymium (Nd)-doped phosphate glass, selected due to its easy handling and capability to change color according to the incident light wavelength. The glass core was covered by a metal alloy to mitigate its relatively high fragility and sensitivity to thermal shock and, at the same time, to highlight and preserve its beauty. The selection of the proper metal alloy, having thermo-mechanical properties compatible with those exhibited by the glass, was carried out by means of Ashby's maps, a powerful tool commonly adopted in the field of industrial design.

14.
J Biophotonics ; 12(7): e201800397, 2019 07.
Article in English | MEDLINE | ID: mdl-30697946

ABSTRACT

Optical fibers have recently attracted a noticeable interest for biomedical applications because they provide a minimally invasive method for in vivo sensing, imaging techniques, deep-tissue photodynamic therapy or optogenetics. The silica optical fibers are the most commonly used because they offer excellent optical properties, and they are readily available at a reasonable price. The fused silica is a biocompatible material, but it is not bioresorbable so it does not decompose in the body and the fibers must be ex-planted after in vivo use and their fragments can present a considerable risk to the patient when the fiber breaks. In contrast, optical fibers made of phosphate glasses can bring many benefits because such glasses exhibit good transparency in ultraviolet-visible and near-infrared regions, and their solubility in water can be tailored by changing the chemical composition. The bioresorbability and toxicity of phosphate glass-based optical fibers were tested in vivo on male laboratory rats for the first time. The fiber was spliced together with a standard graded-index multi-mode fiber pigtail and an optical probe for in vitro pH measurement was prepared by the immobilization of a fluorescent dye on the fiber tip by a sol-gel method to demonstrate applicability and compatibility of the fiber with common fiber optics.


Subject(s)
Optical Fibers , Phosphates/chemistry , Phosphates/metabolism , Animals , Hydrogen-Ion Concentration , Male , Rats , Rats, Wistar , Silicon Dioxide/chemistry
15.
Materials (Basel) ; 12(1)2019 Jan 03.
Article in English | MEDLINE | ID: mdl-30609783

ABSTRACT

The effect of the incorporation of Er2O3-doped particles on the structural and luminescence properties of phosphate glasses was investigated. A series of different Er2O3-doped TiO2, ZnO, and ZrO2 microparticles was synthesized using soft chemistry and then added into various phosphate glasses after the melting at a lower temperature than the melting temperature. The compositional, morphological, and structural analyses of the particles-containing glasses were performed using elemental mapping by field emission-scanning electron microscopy (FE-SEM) with energy dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD). Additionally, the luminescence spectra and the lifetime values were measured to study the influence of the particles incorporation on the spectroscopic properties of the glasses. From the spectroscopic properties of the glasses with the composition 50P2O5-40SrO-10Na2O, a large amount of the Er2O3-doped particles is thought to dissolve during the glass melting. Conversely, the particles were found to survive in glasses with a composition 90NaPO3-(10 - x)Na2O-xNaF (with x = 0 and 10 mol %) due to their lower processing temperature, thus clearly showing that the direct doping method is a promising technique for the development of new active glasses.

16.
Opt Lett ; 43(4): 671-674, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29444050

ABSTRACT

We demonstrate, for the first time, an inscription and wet dissolution study of Bragg gratings in a bioresorbable calcium-phosphate glass optical fiber. Bragg gratings, with average refractive index changes of 5.8×10-4, were inscribed using 193 nm excimer laser radiation. Results on the dissolution of the irradiated fiber in simulated physiological conditions are presented after immersing a tilted Bragg grating in a phosphate buffered saline solution for 56 h; selective chemical etching effects are also reported. The investigations performed pave the way toward the use of such phosphate glass fiber Bragg gratings for the development of soluble photonic sensing probes for the efficient in vivo monitoring of vital mechanical or chemical parameters.


Subject(s)
Calcium Phosphates/chemistry , Calcium Phosphates/metabolism , Optical Fibers , Optical Phenomena , Glass/chemistry
17.
Nanomaterials (Basel) ; 8(1)2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29301282

ABSTRACT

Titania particles doped with various concentrations of Erbium were synthesized by the sol-gel method followed by different heat treatments. The shape and the grain growth of the particles were noticeably affected by the concentration of Erbium and the heat treatment conditions. An infrared emission at 1530 nm, as well as green and red up-conversion emissions at 550 and 670 nm, were observed under excitation at 976 nm from all of the synthesized particles. The emission spectra and lifetime values appeared to be strongly influenced by the presence of the different crystalline phases. This work presents important guidelines for the synthesis of functional Er3+-doped titania particles with controlled and tailored spectroscopic properties for photonic applications.

18.
J Biophotonics ; 11(1)2018 01.
Article in English | MEDLINE | ID: mdl-28635027

ABSTRACT

In the last years bioresorbable materials are gaining increasing interest for building implantable optical components for medical devices. In this work we show the fabrication of bioresorbable optical fibers designed for diffuse optics applications, featuring large core diameter (up to 200 µm) and numerical aperture (0.17) to maximize the collection efficiency of diffused light. We demonstrate the suitability of bioresorbable fibers for time-domain diffuse optical spectroscopy firstly checking the intrinsic performances of the setup by acquiring the instrument response function. We then validate on phantoms the use of bioresorbable fibers by applying the MEDPHOT protocol to assess the performance of the system in measuring optical properties (namely, absorption and scattering coefficients) of homogeneous media. Further, we show an ex-vivo validation on a chicken breast by measuring the absorption and scattering spectra in the 500-1100 nm range using interstitially inserted bioresorbable fibers. This work represents a step toward a new way to look inside the body using optical fibers that can be implanted in patients. These fibers could be useful either for diagnostic (e. g. for monitoring the evolution after surgical interventions) or treatment (e. g. photodynamic therapy) purposes. Picture: Microscopy image of the 100 µm core bioresorbable fiber.


Subject(s)
Optical Fibers , Absorption, Physicochemical , Calcium Phosphates/chemistry , Diffusion , Glass/chemistry , Linear Models , Time Factors , Transition Temperature
19.
Materials (Basel) ; 10(5)2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28772833

ABSTRACT

Er-doped phosphate glass ceramics were fabricated by melt-quenching technique followed by a heat treatment. The effect of the crystallization on the structural and luminescence properties of phosphate glasses containing Al2O3, TiO2, and ZnO was investigated. The morphological and structural properties of the glass ceramics were characterized by Field Emission-Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), and micro-Raman spectroscopy. Additionally, the luminescence spectra and the lifetime values were measured in order to study the influence of the crystallization on the spectroscopic properties of the glasses. The volume ratio between the crystal and the glassy phases increased along with the duration of the heat treatment. The crystallization of the glass ceramics was confirmed by the presence of sharp peaks in the XRD patterns and different crystal phases were identified depending on the glass composition. Sr(PO3)2 crystals were found to precipitate in all the investigated glasses. As evidenced by the spectroscopic properties, the site of the Er3+ ions was not strongly affected by the heat treatment except for the fully crystallized glass ceramic which does not contain Al2O3, TiO2, and ZnO. An increase of the lifetime was also observed after the heat treatment of this glass. Therefore, we suspect that the Er3+ ions are incorporated in the precipitated crystals only in this glass ceramic.

20.
Materials (Basel) ; 9(4)2016 Apr 19.
Article in English | MEDLINE | ID: mdl-28773419

ABSTRACT

Manganese oxides (MnOx), being active, inexpensive and low-toxicity materials, are considered promising water oxidation catalysts (WOCs). This work reports the preparation and the physico-chemical and electrochemical characterization of spin-coated (SC) films of commercial Mn2O3, Mn3O4 and MnO2 powders. Spin coating consists of few preparation steps and employs green chemicals (i.e., ethanol, acetic acid, polyethylene oxide and water). To the best of our knowledge, this is the first time SC has been used for the preparation of stable powder-based WOCs electrodes. For comparison, MnOx films were also prepared by means of electrodeposition (ED) and tested under the same conditions, at neutral pH. Particular interest was given to α-Mn2O3-based films, since Mn (III) species play a crucial role in the electrocatalytic oxidation of water. To this end, MnO2-based SC and ED films were calcined at 500 °C, in order to obtain the desired α-Mn2O3 crystalline phase. Electrochemical impedance spectroscopy (EIS) measurements were performed to study both electrode charge transport properties and electrode-electrolyte charge transfer kinetics. Long-term stability tests and oxygen/hydrogen evolution measurements were also made on the highest-performing samples and their faradaic efficiencies were quantified, with results higher than 95% for the Mn2O3 SC film, finally showing that the SC technique proposed here is a simple and reliable method to study the electrocatalytic behavior of pre-synthesized WOCs powders.

SELECTION OF CITATIONS
SEARCH DETAIL
...