Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564252

ABSTRACT

Currently, the identification of patient-specific therapies in cancer is mainly informed by personalized genomic analysis. In the setting of acute myeloid leukemia (AML), patient-drug treatment matching fails in a subset of patients harboring atypical internal tandem duplications (ITDs) in the tyrosine kinase domain of the FLT3 gene. To address this unmet medical need, here we develop a systems-based strategy that integrates multiparametric analysis of crucial signaling pathways, and patient-specific genomic and transcriptomic data with a prior knowledge signaling network using a Boolean-based formalism. By this approach, we derive personalized predictive models describing the signaling landscape of AML FLT3-ITD positive cell lines and patients. These models enable us to derive mechanistic insight into drug resistance mechanisms and suggest novel opportunities for combinatorial treatments. Interestingly, our analysis reveals that the JNK kinase pathway plays a crucial role in the tyrosine kinase inhibitor response of FLT3-ITD cells through cell cycle regulation. Finally, our work shows that patient-specific logic models have the potential to inform precision medicine approaches.


Subject(s)
Leukemia, Myeloid, Acute , Signal Transduction , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , MAP Kinase Signaling System , Cell Line , Drug Resistance , fms-Like Tyrosine Kinase 3/genetics
2.
Nucleic Acids Res ; 51(13): 6723-6737, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37254810

ABSTRACT

The MUS81 complex is crucial for preserving genome stability through resolution of branched DNA intermediates in mitosis and also for the processing of deprotected replication forks in BRCA2-deficient cells. Because of the existence of two different MUS81 complexes in mammalian cells that act in M- or S-phase, whether and how the PARPi sensitivity of BRCA2-deficient cells is affected by loss of MUS81 function is unclear. Here, using a mutant of MUS81 that impairs its function in M-phase, we show that viability of BRCA2-deficient cells but not their PARPi sensitivity requires a fully-functional MUS81 complex in mitosis. In contrast, expression of a constitutively-active MUS81 is sufficient to confer PARPi resistance. From a mechanistic point of view, our data indicate that deregulated action of the mitotic active form of MUS81 in S-phase leads to the cleavage of stalled replication forks before their reversal, bypassing fork deprotection, and engaging a Polθ-dependent DSBs repair. Collectively, our findings describe a novel mechanism leading to PARPi resistance that involves unscheduled MUS81-dependent cleavage of intact, unreversed replication forks. Since this cleavage occurs mimicking the phosphorylated status of S87 of MUS81, our data suggest that hyperphosphorylation of this residue in S-phase might represent a novel biomarker to identify resistance to PARPi.


Subject(s)
Antineoplastic Agents , DNA-Binding Proteins , Endonucleases , Animals , DNA Replication , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Mammals/metabolism , Phosphorylation , Antineoplastic Agents/metabolism
4.
Leukemia ; 37(2): 288-297, 2023 02.
Article in English | MEDLINE | ID: mdl-36509894

ABSTRACT

The insertion site of the internal tandem duplications (ITDs) in the FLT3 gene affects the sensitivity to tyrosine kinase inhibitors (TKIs) therapy in acute myeloid leukemia (AML). Patients with the ITD in the tyrosine kinase domain lack effective therapeutic options. Here, to identify genotype-driven strategies increasing the TKI therapy efficacy, we developed SignalingProfiler, a strategy supporting the integration of high-sensitive mass spectrometry-based (phospho)proteomics, RNA sequencing datasets with literature-derived signaling networks. The approach generated FLT3-ITD genotype-specific predictive models and revealed a conserved role of the WEE1-CDK1 axis in TKIs resistance. Remarkably, pharmacological inhibition of the WEE1 kinase synergizes and strengthens the pro-apoptotic effect of TKIs therapy in cell lines and patient-derived primary blasts. Finally, we propose a new molecular mechanism of TKIs resistance in AML and suggest the combination of WEE1 inhibitor and TKI as a therapeutic option to improve patients clinical outcome.


Subject(s)
Leukemia, Myeloid, Acute , Protein Kinase Inhibitors , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm/genetics , Cell Line , Signal Transduction , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Mutation , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism , CDC2 Protein Kinase/pharmacology
5.
Genes (Basel) ; 12(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33809949

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused more than 2.3 million casualties worldwide and the lack of effective treatments is a major health concern. The development of targeted drugs is held back due to a limited understanding of the molecular mechanisms underlying the perturbation of cell physiology observed after viral infection. Recently, several approaches, aimed at identifying cellular proteins that may contribute to COVID-19 pathology, have been reported. Albeit valuable, this information offers limited mechanistic insight as these efforts have produced long lists of cellular proteins, the majority of which are not annotated to any cellular pathway. We have embarked in a project aimed at bridging this mechanistic gap by developing a new bioinformatic approach to estimate the functional distance between a subset of proteins and a list of pathways. A comprehensive literature search allowed us to annotate, in the SIGNOR 2.0 resource, causal information underlying the main molecular mechanisms through which severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses affect the host-cell physiology. Next, we developed a new strategy that enabled us to link SARS-CoV-2 interacting proteins to cellular phenotypes via paths of causal relationships. Remarkably, the extensive information about inhibitors of signaling proteins annotated in SIGNOR 2.0 makes it possible to formulate new potential therapeutic strategies. The proposed approach, which is generally applicable, generated a literature-based causal network that can be used as a framework to formulate informed mechanistic hypotheses on COVID-19 etiology and pathology.


Subject(s)
Autophagy/genetics , COVID-19/metabolism , COVID-19/virology , Host Microbial Interactions/genetics , SARS-CoV-2/metabolism , Signal Transduction , COVID-19/genetics , COVID-19/pathology , Gene Ontology , Gene Regulatory Networks , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/virology , Proteome , PubMed , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction/genetics
6.
Proteomes ; 9(2)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925552

ABSTRACT

FLT3 mutations are the most frequently identified genetic alterations in acute myeloid leukemia (AML) and are associated with poor clinical outcome, relapse and chemotherapeutic resistance. Elucidating the molecular mechanisms underlying FLT3-dependent pathogenesis and drug resistance is a crucial goal of biomedical research. Given the complexity and intricacy of protein signaling networks, deciphering the molecular basis of FLT3-driven drug resistance requires a systems approach. Here we discuss how the recent advances in mass spectrometry (MS)-based (phospho) proteomics and multiparametric analysis accompanied by emerging computational approaches offer a platform to obtain and systematically analyze cell-specific signaling networks and to identify new potential therapeutic targets.

7.
Cancer Lett ; 478: 133-145, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32112906

ABSTRACT

Emerging data indicate that the reverse transcriptase (RT) protein encoded by LINE-1 transposable elements is a promising cancer target. Nonnucleoside RT inhibitors, e.g. efavirenz (EFV) and SPV122.2, reduce proliferation and promote differentiation of cancer cells, concomitant with a global reprogramming of the transcription profile. Both inhibitors have therapeutic anticancer efficacy in animal models. Here we have sought to clarify the mechanisms of RT inhibitors in cancer cells. We report that exposure of PC3 metastatic prostate carcinoma cells to both RT inhibitors results in decreased proliferation, and concomitantly induces genome damage. This is associated with rearrangements of the nuclear architecture, particularly at peripheral chromatin, disruption of the nuclear lamina, and budding of micronuclei. These changes are reversible upon discontinuation of the RT-inhibitory treatment, with reconsititution of the lamina and resumption of the cancer cell original features. The use of pharmacological autophagy inhibitors proves that autophagy is largely responsible for the antiproliferative effect of RT inhibitors. These alterations are not induced in non-cancer cell lines exposed to RT inhibitors. These data provide novel insight in the molecular pathways targeted by RT inhibitors in cancer cells.


Subject(s)
Alkynes/pharmacology , Benzoxazines/pharmacology , Cell Nucleus/drug effects , Cyclopropanes/pharmacology , Prostatic Neoplasms/genetics , Pyrimidinones/pharmacology , Reverse Transcriptase Inhibitors/pharmacology , Autophagy , Cell Differentiation , Cell Line, Tumor , Cell Nucleus/genetics , Cell Proliferation/drug effects , DNA Damage , Humans , Male , PC-3 Cells , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism
8.
Dis Model Mech ; 12(10)2019 10 17.
Article in English | MEDLINE | ID: mdl-31515241

ABSTRACT

Schimke immuno-osseous dysplasia is an autosomal recessive genetic osteochondrodysplasia characterized by dysmorphism, spondyloepiphyseal dysplasia, nephrotic syndrome and frequently T cell immunodeficiency. Several hypotheses have been proposed to explain the pathophysiology of the disease; however, the mechanism by which SMARCAL1 mutations cause the syndrome is elusive. Here, we generated a conditional SMARCAL1 knockdown model in induced pluripotent stem cells (iPSCs) to mimic conditions associated with the severe form the disease. Using multiple cellular endpoints, we characterized this model for the presence of phenotypes linked to the replication caretaker role of SMARCAL1. Our data show that conditional knockdown of SMARCAL1 in human iPSCs induces replication-dependent and chronic accumulation of DNA damage triggering the DNA damage response. Furthermore, they indicate that accumulation of DNA damage and activation of the DNA damage response correlates with increased levels of R-loops and replication-transcription interference. Finally, we provide evidence that SMARCAL1-deficient iPSCs maintain active DNA damage response beyond differentiation, possibly contributing to the observed altered expression of a subset of germ layer-specific master genes. Confirming the relevance of SMARCAL1 loss for the observed phenotypes, they are prevented or rescued after re-expression of wild-type SMARCAL1 in our iPSC model. In conclusion, our conditional SMARCAL1 knockdown model in iPSCs may represent a powerful model when studying pathogenetic mechanisms of severe Schimke immuno-osseous dysplasia.


Subject(s)
Cell Differentiation/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Gene Expression Regulation , Gene Knockdown Techniques , Induced Pluripotent Stem Cells/metabolism , Stress, Physiological/genetics , Cell Lineage , DNA Damage/genetics , DNA Repair/genetics , Humans , Phosphorylation , S Phase , Transcription, Genetic
9.
Nat Commun ; 10(1): 2023, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31043602

ABSTRACT

The original version of this Article contained an error in Fig. 2. The immunofluorescence images in panel d were inadvertently replaced with duplicates of those in panel c during final assembly of the figure. This has been corrected in the PDF and HTML versions of the Article.

10.
Nat Commun ; 10(1): 1412, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926821

ABSTRACT

Stabilisation of stalled replication forks prevents excessive fork reversal and their pathological degradation, which can undermine genome integrity. Here we investigate a physiological role of RAD52 at stalled replication forks by using human cell models depleted of RAD52, a specific small-molecule inhibitor of the RAD52-ssDNA interaction, in vitro and single-molecule analyses. We demonstrate that RAD52 prevents excessive degradation of reversed replication forks by MRE11. Mechanistically, RAD52 binds to the stalled replication fork, promotes its occlusion and counteracts loading of SMARCAL1 in vitro and in vivo. Loss of the RAD52 function results in a slightly-defective replication restart, persistence of under-replicated regions and chromosome instability. Moreover, the RAD52-inhibited cells rely on RAD51 for completion of replication and viability upon replication arrest. Collectively, our data suggest an unexpected gatekeeper mechanism by which RAD52 limits excessive remodelling of stalled replication forks, thus indirectly assisting RAD51 and BRCA2 in protecting forks from unscheduled degradation and preventing genome instability.


Subject(s)
DNA Damage , DNA Replication , Rad52 DNA Repair and Recombination Protein/metabolism , Cell Line , DNA Helicases/metabolism , DNA, Single-Stranded/metabolism , Genomic Instability , Humans , MRE11 Homologue Protein/metabolism , Models, Biological , Rad51 Recombinase
11.
Nucleic Acids Res ; 46(10): 5109-5124, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29850896

ABSTRACT

The MUS81 complex is crucial for preserving genome stability through the resolution of branched DNA intermediates in mitosis. However, untimely activation of the MUS81 complex in S-phase is dangerous. Little is known about the regulation of the human MUS81 complex and how deregulated activation affects chromosome integrity. Here, we show that the CK2 kinase phosphorylates MUS81 at Serine 87 in late-G2/mitosis, and upon mild replication stress. Phosphorylated MUS81 interacts with SLX4, and this association promotes the function of the MUS81 complex. In line with a role in mitosis, phosphorylation at Serine 87 is suppressed in S-phase and is mainly detected in the MUS81 molecules associated with EME1. Loss of CK2-dependent MUS81 phosphorylation contributes modestly to chromosome integrity, however, expression of the phosphomimic form induces DSBs accumulation in S-phase, because of unscheduled targeting of HJ-like DNA intermediates, and generates a wide chromosome instability phenotype. Collectively, our findings describe a novel regulatory mechanism controlling the MUS81 complex function in human cells. Furthermore, they indicate that, genome stability depends mainly on the ability of cells to counteract targeting of branched intermediates by the MUS81/EME1 complex in S-phase, rather than on a correct MUS81 function in mitosis.


Subject(s)
Casein Kinase II/metabolism , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/metabolism , Mitosis/physiology , Casein Kinase II/genetics , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/genetics , Endonucleases/genetics , Genomic Instability , HEK293 Cells , Humans , Phosphorylation , Recombinases/genetics , Recombinases/metabolism , S Phase/physiology , Serine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...