Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37374439

ABSTRACT

Based on the analysis of existing collective shockwave protection methods worldwide, this paper addresses the mitigation of shock waves by means of passive methods, namely the use of perforated plates. Employing specialized software for numerical analysis, such as ANSYS-AUTODYN 2022R1®, the interaction of shock waves with a protection structure has been studied. By using this cost-free approach, several configurations with different opening ratios were investigated, pointing out the peculiarities of the real phenomenon. The FEM-based numerical model was calibrated by employing live explosive tests. The experimental assessments were performed for two configurations, with and without a perforated plate. The numerical results were expressed in terms of force acting on an armor plate placed behind a perforated plate at a relevant distance for ballistic protection in engineering applications. By investigating the force/impulse acting on a witness plate instead of the pressure measured at a single point, a realistic scenario can be considered. For the total impulse attenuation factor, the numerical results suggest a power law dependence, with the opening ratio as a variable.

2.
Micron ; 102: 1-14, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28830057

ABSTRACT

We tested here the ability of bee venom (BV) to interfere with spermatogenesis in rats in two experimental conditions. The histopathological changes were assessed with brightfield microscopy using a novel staining technique, based on methylene blue, orange G and ponceau xylidine. Transmission electron microscopy was also used to identify fine subcellular changes. BV injection for 30days in daily doses of 700µg BV/kg resulted in reducing testicular weight, along with significant larger diameters of seminiferous tubules and reduced number of Sertoli cells (SCs). SCs were vacuolated, detached from the basement membrane, many necrosed, leading to the basement membrane denudation. Germ cells layers were separated by empty spaces conferring a rarefied aspect to the tissue, and spermatids were detached into lumen. Thus, the seminiferous epithelium was significantly thinned. Many Leydig cells (LCs) were in a necrotic state, with disrupted plasma membrane and without smooth endoplasmic reticulum. The acute treatment with a single LD50 of 62mgBV/kg, was followed by focal disruptions of the basement membrane and localized areas of necrosis, mainly affecting the SCs. Most of the observed SCs as well as some spermatogonia were highly vacuoled, empty spaces being observed within the epithelium. The SCs count was significantly decreased. Spermatids had also the tendency of separation from the SCs, and the significant larger diameter of the tubules found was associated with a thicker epithelium. Many LCs were necrosed, with disrupted plasma membrane, swollen mitochondria, no endoplasmic reticulum and implicitly showing rarefied cytoplasm. We concluded that BV was a testicular toxicant affecting both the LCs and the seminiferous tubules. The SCs cells represented the primary target site of BV whose effects were next extended upon the germ cells. In all cells, BV triggered unspecific degenerative changes that could impaire spermatogenesis. The present study also proposes an alternative staining technique very useful in assessing the histopathological aspects of spermatogenesis.


Subject(s)
Bee Venoms/toxicity , Seminiferous Epithelium/pathology , Seminiferous Epithelium/ultrastructure , Sertoli Cells/ultrastructure , Spermatogenesis/drug effects , Animals , Basement Membrane/pathology , Bees/metabolism , Cell Membrane/pathology , Endoplasmic Reticulum, Smooth/pathology , Leydig Cells/pathology , Male , Microscopy, Electron, Transmission , Mitochondria/pathology , Necrosis/chemically induced , Rats , Rats, Wistar , Spermatids/ultrastructure
3.
Cell Mol Neurobiol ; 31(5): 701-14, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21359542

ABSTRACT

The aim of this study is to evaluate the bioelectrical and structural-functional changes in frontal cortex after the bee venom (BV) experimental treatments simulating both an acute envenomation and a subchronic BV therapy. Wistar rats were subcutaneously injected once with three different BV doses: 700 µg/kg (T(1) group), 2100 µg/kg (T(3) group), and 62 mg/kg (sublethal dose-in T(SL) group), and repeated for 30 days with the lowest dose (700 µg/kg-in T(S) group). BV effects were assessed by electrophysiological, histological, histochemical, and ultrastructural methods. Single BV doses produced discharges of negative and biphasic sharp waves, and epileptiform spike-wave complexes. The increasing frequency of these elements suggested a dose-dependent neuronal hyperexcitation or irritation. As compared to the lower doses, the sublethal dose was responsible for a pronounced toxic effect, confirmed by ultrastructural data in both neurons and glial cells that underwent extensive, irreversible changes, triggering the cellular death. Subchronic BV treatment in T(S) group resulted in a slower frequency and increased amplitude of cortical activity suggesting neuronal loss. However, neurons were still stimulated by the last BV dose. Structural-functional data showed a reduced cellular density in frontal cortex of animals in this group, while the remaining neurons displayed both specific (stimulation of neuronal activity) and unspecific modifications (moderate alterations to necrotic phenomena). Molecular mechanisms involved in BV interactions with the nervous tissue are also discussed. We consider all these data very important for clinicians who manage patients with multiple bee stings, or who intend to set an appropriate BV therapy.


Subject(s)
Bee Venoms/toxicity , Electrophysiological Phenomena/drug effects , Frontal Lobe/pathology , Frontal Lobe/ultrastructure , Animals , Electroencephalography , Frontal Lobe/drug effects , Frontal Lobe/physiopathology , Immunohistochemistry , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...