Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Autophagy ; 19(11): 3017-3018, 2023 11.
Article in English | MEDLINE | ID: mdl-37415304

ABSTRACT

ABBREVIATIONS: Autophagy-related 9 (Atg9); cytoplasm-to-vacuole targeting (Cvt); Golgi-associated retrograde protein (GARP); multisubunit tethering complexes (MTCs); phagophore assembly site (PAS); phosphatidylserine (PS); Protein interactions from Imaging Complexes after Translocation (PICT); transport protein particle III (TRAPPIII); type IV P-type ATPases (P4-ATPases).


Subject(s)
Saccharomyces cerevisiae Proteins , Vesicular Transport Proteins , Autophagy , Autophagy-Related Proteins/metabolism , Cold Temperature , Protein Transport , Saccharomyces cerevisiae Proteins/metabolism , Transport Vesicles/metabolism , Vesicular Transport Proteins/metabolism
2.
EMBO Rep ; 24(5): e56134, 2023 05 04.
Article in English | MEDLINE | ID: mdl-36929574

ABSTRACT

Multisubunit Tethering Complexes (MTCs) are a set of conserved protein complexes that tether vesicles at the acceptor membrane. Interactions with other components of the trafficking machinery regulate MTCs through mechanisms that are partially understood. Here, we systematically investigate the interactome that regulates MTCs. We report that P4-ATPases, a family of lipid flippases, interact with MTCs that participate in the anterograde and retrograde transport at the Golgi, such as TRAPPIII. We use the P4-ATPase Drs2 as a paradigm to investigate the mechanism and biological relevance of this interplay during transport of Atg9 vesicles. Binding of Trs85, the sole-specific subunit of TRAPPIII, to the N-terminal tail of Drs2 stabilizes TRAPPIII on membranes loaded with Atg9 and is required for Atg9 delivery during selective autophagy, a role that is independent of P4-ATPase canonical functions. This mechanism requires a conserved I(S/R)TTK motif that also mediates the interaction of the P4-ATPases Dnf1 and Dnf2 with MTCs, suggesting a broader role of P4-ATPases in MTC regulation.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Calcium-Transporting ATPases/chemistry , Calcium-Transporting ATPases/metabolism , ATP-Binding Cassette Transporters/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL