Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(25): 11969-11976, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38874918

ABSTRACT

Nanomedicine is a field at the intersection of nanotechnology and medicine, promising due to its potential to revolutionize healthcare. Despite its long trajectory, there is still a long road ahead for its full development, and smart design of nanomedicines is still a challenge. Among other problems, this is due to the scarcity of tools available for the precise visualization and comprehension of nano-bio interactions, impeding progress towards the clinical phase. One of the developed tools that stands out to be a strong nanoscopy technique for studying nano-delivery systems within cellular environments is expansion microscopy (ExM). This technique was used for tissue and cell expansion and most recently for lipid molecule expansion inside cells. Herein, we present for the first time polyplex expansion microscopy (PExM); a comprehensive examination of ExM as an already developed technique, but adapted for expanding polymer based nanocarriers, in particular polyplexes within cells, allowing the analysis of their trafficking. With our method set up, PExM will be extensively used for the study of polyplex nanoparticle cell trafficking, becoming a high-resolution technique which can also be applied to primary amine containing polymeric nanoparticles without requiring expensive super-resolution microscopes.


Subject(s)
Nanoparticles , Humans , Nanoparticles/chemistry , Polymers/chemistry , Microscopy/methods , Nanomedicine
2.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612886

ABSTRACT

Stimuli-responsive supramolecular polymers are ordered nanosized materials that are held together by non-covalent interactions (hydrogen-bonding, metal-ligand coordination, π-stacking and, host-guest interactions) and can reversibly undergo self-assembly. Their non-covalent nature endows supramolecular polymers with the ability to respond to external stimuli (temperature, light, ultrasound, electric/magnetic field) or environmental changes (temperature, pH, redox potential, enzyme activity), making them attractive candidates for a variety of biomedical applications. To date, supramolecular research has largely evolved in the development of smart water-soluble self-assemblies with the aim of mimicking the biological function of natural supramolecular systems. Indeed, there is a wide variety of synthetic biomaterials formulated with responsiveness to control and trigger, or not to trigger, aqueous self-assembly. The design of responsive supramolecular polymers ranges from the use of hydrophobic cores (i.e., benzene-1,3,5-tricarboxamide) to the introduction of macrocyclic hosts (i.e., cyclodextrins). In this review, we summarize the most relevant advances achieved in the design of stimuli-responsive supramolecular systems used to control transport and release of both diagnosis agents and therapeutic drugs in order to prevent, diagnose, and treat human diseases.


Subject(s)
Cyclodextrins , Stimuli Responsive Polymers , Humans , Benzene , Biocompatible Materials , Electricity , Water
3.
Small Methods ; : e2301072, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38348928

ABSTRACT

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.

4.
Nanoscale ; 16(6): 2904-2912, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38054755

ABSTRACT

The interaction of nanoparticles with biological media is a topic of general interest for drug delivery systems and among those for active nanoparticles, also called nanomotors. Herein, we report the use of super resolution microscopy, in particular, stochastic optical reconstruction microscopy (STORM), to characterize the formation of a protein corona around active enzyme-powered nanomotors. First, we characterized the distribution and number of enzymes on nano-sized particles and characterized their motion capabilities. Then, we incubated the nanomotors with fluorescently labelled serum proteins. Interestingly, we observed a significant decrease of protein corona formation (20%) and different composition, which was studied by proteomic analysis. Moreover, motion was not hindered, as nanomotors displayed enhanced diffusion regardless of the protein corona. Elucidating how active particles interact with biological media and maintain their self-propulsion after protein corona formation will pave the way for the use of these systems in complex biological fluids in biomedicine.


Subject(s)
Nanoparticles , Protein Corona , Proteomics , Drug Delivery Systems
5.
ACS Appl Mater Interfaces ; 15(51): 59134-59144, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38102079

ABSTRACT

Degradable polymeric micelles are promising drug delivery systems due to their hydrophobic core and responsive design. When applying micellar nanocarriers for tumor delivery, one of the bottlenecks encountered in vivo is the tumor tissue barrier: crossing the dense mesh of cells and the extracellular matrix (ECM). Sometimes overlooked, the extracellular matrix can trap nanoformulations based on charge, size, and hydrophobicity. Here, we used a simple design of a microfluidic chip with two types of ECM and MCF7 spheroids to allow "high-throughput" screening of the interactions between biological interfaces and polymeric micelles. To demonstrate the applicability of the chip, a small library of fluorescently labeled polymeric micelles varying in their hydrophilic shell and hydrophobic core forming blocks was studied. Three widely used hydrophilic shells were tested and compared, namely, poly(ethylene glycol), poly(2-ethyl-2-oxazoline), and poly(acrylic acid), along with two enzymatically degradable dendritic hydrophobic cores (based on hexyl or nonyl end groups). Using ratiometric imaging of unimer:micelle fluorescence and FRAP inside the chip model, we obtained the local assembly state and dynamics inside the chip. Notably, we observed different micelle behaviors in the basal lamina ECM, from avoidance of the ECM structure to binding of the poly(acrylic acid) formulations. Binding to the basal lamina correlated with higher uptake into MCF7 spheroids. Overall, we proposed a simple microfluidic chip containing dual ECM and spheroids for the assessment of the interactions of polymeric nanocarriers with biological interfaces and evaluating nanoformulations' capacity to cross the tumor tissue barrier.


Subject(s)
Micelles , Neoplasms , Humans , Polymers/chemistry , Polyethylene Glycols/chemistry , Extracellular Matrix , Lab-On-A-Chip Devices , Drug Carriers/chemistry
6.
Nanoscale ; 15(35): 14615-14627, 2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37614108

ABSTRACT

Nanoparticles (NPs) are used to encapsulate therapeutic cargos and deliver them specifically to the target site. The intracellular trafficking of NPs dictates the NP-cargo distribution within different cellular compartments, and thus governs their efficacy and safety. Knowledge in this field is crucial to understand their biological fate and improve their rational design. However, there is a lack of methods that allow precise localization and quantification of individual NPs within distinct cellular compartments simultaneously. Here, we address this issue by proposing a correlative light and electron microscopy (CLEM) method combining direct stochastic optical reconstruction microscopy (dSTORM) and transmission electron microscopy (TEM). We aim at combining the advantages of both techniques to precisely address NP localization in the context of the cell ultrastructure. Individual fluorescently-labelled poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) NPs were directly visualized by dSTORM and assigned to cellular compartments by TEM. We first tracked NPs along the endo-lysosomal pathway at different time points, then demonstrated the effect of chloroquine on their intracellular distribution (i.e. endosomal escape). The proposed protocol can be applied to fluorescently labelled NPs and/or cargo, including those not detectable by TEM alone. Our studies are of great relevance to obtain important information on NP trafficking, and crucial for the design of more complex nanomaterials aimed at cytoplasmic/nucleic drug delivery.


Subject(s)
Nanoparticles , Nanostructures , Microscopy, Electron, Transmission , Cell Nucleus , Endosomes
7.
Nanoscale ; 15(28): 12008-12024, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37403617

ABSTRACT

Biodegradable periodic mesoporous organosilica nanoparticles (nanoPMOs) are widely used as responsive drug delivery platforms for targeted chemotherapy of cancer. However, the evaluation of their properties such as surface functionality and biodegradability is still challenging, which has a significant impact on the efficiency of chemotherapy. In this study, we have applied direct stochastic optical reconstruction microscopy (dSTORM), a single-molecule super-resolution microscopy technique, to quantify the degradation of nanoPMOs triggered by glutathione and the multivalency of antibody-conjugated nanoPMOs. Subsequently, the effect of these properties on cancer cell targeting, drug loading and release capability, and anticancer activity is also studied. Due to the higher spatial resolution at the nanoscale, dSTORM imaging is able to reveal the structural properties (i.e., size and shape) of fluorescent and biodegradable nanoPMOs. The quantification of nanoPMOs' biodegradation using dSTORM imaging demonstrates their excellent structure-dependent degradation behavior at a higher glutathione concentration. The surface functionality of anti-M6PR antibody-conjugated nanoPMOs as quantified by dSTORM imaging plays a key role in prostate cancer cell labeling: oriented antibody is more effective than random ones, while high multivalency is also effective. The higher biodegradability and cancer cell-targeting properties of nanorods conjugated with oriented antibody (EAB4H) effectively deliver the anticancer drug doxorubicin to cancer cells, exhibiting potent anticancer effects.


Subject(s)
Nanoparticles , Prostatic Neoplasms , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/drug therapy , Antibodies/chemistry , Antibodies/immunology , Porosity , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Drug Delivery Systems , Oxidation-Reduction , Surface Properties , Humans , Cell Line, Tumor
8.
Neuron ; 111(14): 2170-2183.e6, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37192625

ABSTRACT

In Alzheimer's disease, fibrillar tau pathology accumulates and spreads through the brain and synapses are lost. Evidence from mouse models indicates that tau spreads trans-synaptically from pre- to postsynapses and that oligomeric tau is synaptotoxic, but data on synaptic tau in human brain are scarce. Here we used sub-diffraction-limit microscopy to study synaptic tau accumulation in postmortem temporal and occipital cortices of human Alzheimer's and control donors. Oligomeric tau is present in pre- and postsynaptic terminals, even in areas without abundant fibrillar tau deposition. Furthermore, there is a higher proportion of oligomeric tau compared with phosphorylated or misfolded tau found at synaptic terminals. These data suggest that accumulation of oligomeric tau in synapses is an early event in pathogenesis and that tau pathology may progress through the brain via trans-synaptic spread in human disease. Thus, specifically reducing oligomeric tau at synapses may be a promising therapeutic strategy for Alzheimer's disease.


Subject(s)
Alzheimer Disease , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Brain/metabolism , Presynaptic Terminals/metabolism , Synapses/metabolism , tau Proteins/metabolism
9.
Nanoscale Adv ; 5(5): 1378-1385, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36866255

ABSTRACT

The concept of selective tumor targeting using nanomedicines has been around for decades; however, no targeted nanoparticle has yet reached the clinic. A key bottleneck is the non-selectivity of targeted nanomedicines in vivo, which is attributed to the lack of characterization of their surface properties, especially the ligand number, thereby calling for robust techniques that allow quantifiable outcomes for an optimal design. Multivalent interactions comprise multiple copies of ligands attached to scaffolds, allowing simultaneous binding to receptors, and they play an important role in targeting. As such, 'multivalent' nanoparticles facilitate simultaneous interaction of weak surface ligands with multiple target receptors resulting in higher avidity and enhanced cell selectivity. Therefore, the study of weak binding ligands for membrane-exposed biomarkers is crucial for the successful development of targeted nanomedicines. Here we carried out a study of a cell targeting peptide known as WQP having weak binding affinity for prostate specific membrane antigen, a known prostate cancer biomarker. We evaluated the effect of its multivalent targeting using polymeric NPs over its monomeric form on the cellular uptake in different prostate cancer cell lines. We developed a method of specific enzymatic digestion to quantify the number of WQPs on NPs having different surface valencies and observed that increasing valencies resulted in a higher cellular uptake of WQP-NPs over the peptide alone. We also found that WQP-NPs showed higher uptake in PSMA over-expressing cells, attributed to a stronger avidity for selective PSMA targeting. This kind of strategy can be useful for improving the binding affinity of a weak ligand as a means for selective tumor targeting.

10.
J Am Chem Soc ; 144(46): 21196-21205, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36368016

ABSTRACT

Supramolecular assemblies have been gaining attention in recent years in the field of drug delivery because of their unique formulation possibilities and adaptive behavior. Their non-covalent nature allows for their self-assembly formulation and responsiveness to stimuli, an appealing feature to trigger a therapeutic action with spatiotemporal control. However, facing in vivo conditions is very challenging for non-covalent structures. Dilution and proteins in blood can have a direct impact on self-assembly, destabilizing the supramolecules and leading to a premature and uncontrolled cargo release. To rationalize this behavior, we designed three monomers exhibiting distinct hydrophobic cores that self-assemble into photo-responsive fibers. We estimated their stability-responsiveness trade-off in vitro, finding two well-separated regimes. These are low-robustness regime, in which the system equilibrates quickly and responds readily to stimuli, and high-robustness regime, in which the system equilibrates slowly and is quite insensitive to stimuli. We probed the performance of both regimes in a complex environment using Förster resonance energy transfer (FRET). Interestingly, the stability-responsiveness trade-off defines perfectly the extent of disassembly caused by dilution but not the one caused by protein interaction. This identifies a disconnection between intrinsic supramolecular robustness and supramolecular stability in the biological environment, strongly influenced by the disassembly pathway upon protein interaction. These findings shed light on the key features to address for supramolecular stability in the biological environment.


Subject(s)
Benzamides , Benzene , Hydrophobic and Hydrophilic Interactions , Polymers/chemistry
11.
Chem Mater ; 34(19): 8517-8527, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36248229

ABSTRACT

The development of contrast agents based on fluorescent nanoparticles with high brightness and stability is a key factor to improve the resolution and signal-to-noise ratio of current fluorescence imaging techniques. However, the design of bright fluorescent nanoparticles remains challenging due to fluorescence self-quenching at high concentrations. Developing bright nanoparticles showing FRET emission adds several advantages to the system, including an amplified Stokes shift, the possibility of ratiometric measurements, and of verifying the nanoparticle stability. Herein, we have developed Förster resonance energy transfer (FRET)-based nanovesicles at different dye loadings and investigated them through complementary experimental techniques, including conventional fluorescence spectroscopy and super-resolution microscopy supported by molecular dynamics calculations. We show that the optical properties can be modulated by dye loading at the nanoscopic level due to the dye's molecular diffusion in fluid-like membranes. This work shows the first proof of a FRET pair dye's dynamism in liquid-like membranes, resulting in optimized nanoprobes that are 120-fold brighter than QDot 605 and exhibit >80% FRET efficiency with vesicle-to-vesicle variations that are mostly below 10%.

13.
ACS Nano ; 16(4): 5615-5626, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35341250

ABSTRACT

Enzyme-powered micro- and nanomotors make use of biocatalysis to self-propel in aqueous media and hold immense promise for active and targeted drug delivery. Most (if not all) of these micro- and nanomotors described to date are fabricated using a commercially available enzyme, despite claims that some commercial preparations may not have a sufficiently high degree of purity for downstream applications. In this study, the purity of a commercial urease, an enzyme frequently used to power the motion of micro- and nanomotors, was evaluated and found to be impure. After separating the hexameric urease from the protein impurities by size-exclusion chromatography, the hexameric urease was subsequently characterized and used to functionalize hollow silica microcapsules. Micromotors loaded with purified urease were found to be 2.5 times more motile than the same micromotors loaded with unpurified urease, reaching average speeds of 5.5 µm/s. After comparing a number of parameters, such as enzyme distribution, protein loading, and motor reusability, between micromotors functionalized with purified vs unpurified urease, it was concluded that protein purification was essential for optimal performance of the enzyme-powered micromotor.


Subject(s)
Silicon Dioxide , Urease , Urease/chemistry , Silicon Dioxide/chemistry , Drug Delivery Systems , Biocatalysis , Water
14.
Nanomaterials (Basel) ; 12(3)2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35159744

ABSTRACT

Nanomedicine involves the use of nanotechnology for clinical applications and holds promise to improve treatments. Recent developments offer new hope for cancer detection, prevention and treatment; however, being a heterogenous disorder, cancer calls for a more targeted treatment approach. Personalized Medicine (PM) aims to revolutionize cancer therapy by matching the most effective treatment to individual patients. Nanotheranostics comprise a combination of therapy and diagnostic imaging incorporated in a nanosystem and are developed to fulfill the promise of PM by helping in the selection of treatments, the objective monitoring of response and the planning of follow-up therapy. Although well-established imaging techniques, such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT), Positron Emission Tomography (PET) and Single-Photon Emission Computed Tomography (SPECT), are primarily used in the development of theranostics, Optical Imaging (OI) offers some advantages, such as high sensitivity, spatial and temporal resolution and less invasiveness. Additionally, it allows for multiplexing, using multi-color imaging and DNA barcoding, which further aids in the development of personalized treatments. Recent advances have also given rise to techniques permitting better penetration, opening new doors for OI-guided nanotheranostics. In this review, we describe in detail these recent advances that may be used to design and develop efficient and specific nanotheranostics for personalized cancer drug delivery.

15.
ACS Photonics ; 9(1): 101-109, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35083366

ABSTRACT

Influenza recombinant proteins and virus-like particles (VLPs) play an important role in vaccine development (e.g., CadiFlu-S). However, their production from mammalian cells suffers from low yields and lack of control of the final VLPs. To improve these issues, characterization techniques able to visualize and quantify the different steps of the process are needed. Fluorescence microscopy represents a powerful tool able to image multiple protein targets; however, its limited resolution hinders the study of viral constructs. Here, we propose the use of super-resolution microscopy and in particular of DNA-point accumulation for imaging in nanoscale topography (DNA-PAINT) microscopy as a characterization method for recombinant viral proteins on both cells and VLPs. We were able to quantify the amount of the three main influenza proteins (hemagglutinin (HA), neuraminidase (NA), and ion channel matrix protein 2 (M2)) per cell and per VLP with nanometer resolution and single-molecule sensitivity, proving that DNA-PAINT is a powerful technique to characterize recombinant viral constructs.

16.
Small Methods ; 5(7): e2100279, 2021 07.
Article in English | MEDLINE | ID: mdl-34928004

ABSTRACT

Mapping the biochemical composition of eukaryotic cells without the use of exogenous labels is a long-sought objective in cell biology. Recently, it has been shown that composition maps on dry single bacterial cells with nanoscale spatial resolution can be inferred from quantitative nanoscale dielectric constant maps obtained with the scanning dielectric microscope. Here, it is shown that this approach can also be applied to the much more challenging case of fixed and dry eukaryotic cells, which are highly heterogeneous and show micrometric topographic variations. More importantly, it is demonstrated that the main bottleneck of the technique (the long computation times required to extract the nanoscale dielectric constant maps) can be shortcut by using supervised neural networks, decreasing them from weeks to seconds in a wokstation computer. This easy-to-use data-driven approach opens the door for in situ and on-the-fly label free nanoscale composition mapping of eukaryotic cells with scanning dielectric microscopy.


Subject(s)
Eukaryotic Cells , Machine Learning , Microscopy, Atomic Force/methods
17.
Nat Chem Biol ; 17(12): 1281-1288, 2021 12.
Article in English | MEDLINE | ID: mdl-34764473

ABSTRACT

Most lectins bind carbohydrate ligands with relatively low affinity, making the identification of optimal ligands challenging. Here we introduce a point accumulation in nanoscale topography (PAINT) super-resolution microscopy method to capture weak glycan-lectin interactions at the single-molecule level in living cells (Glyco-PAINT). Glyco-PAINT exploits weak and reversible sugar binding to directly achieve single-molecule detection and quantification in cells and is used to establish the relative kon and koff rates of a synthesized library of carbohydrate-based probes, as well as the diffusion coefficient of the receptor-sugar complex. Uptake of ligands correlates with their binding affinity and residence time to establish structure-function relations for various synthetic glycans. We reveal how sugar multivalency and presentation geometry can be optimized for binding and internalization. Overall, Glyco-PAINT represents a powerful approach to study weak glycan-lectin interactions on the surface of living cells, one that can be potentially extended to a variety of lectin-sugar interactions.


Subject(s)
Lectins/chemistry , Polysaccharides/chemistry , Single Molecule Imaging/methods , Small Molecule Libraries/chemistry , Animals , CHO Cells , Cell Membrane , Cell Membrane Permeability , Cricetulus , Kinetics , Ligands , Multivariate Analysis , Protein Binding , Structure-Activity Relationship
18.
Chemistry ; 27(43): 11056-11060, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34096656

ABSTRACT

An amine functionalized C3 -symmetric benzotrithiophene (BTT) monomer has been designed and synthetized in order to form pH responsive one-dimensional supramolecular polymers in aqueous media. While most of the reported studies looked at the effect of pH on the size of the aggregates, herein, a detailed mechanistic study is reported, carried out upon modifying the pH to trigger the formation of positively charged ammonium groups. A dramatic and reversible change in the polymerization mechanism and size of the supramolecular fibers is observed and ascribed to the combination of Coulombic repulsive forces and higher monomer solubility. Furthermore, the induced frustrated growth of the fibers is further employed to finely control the one-dimensional supramolecular polymerisation and copolymerization processes.


Subject(s)
Polymers , Water , Hydrogen-Ion Concentration , Macromolecular Substances , Polymerization
19.
Nano Lett ; 21(12): 5360-5368, 2021 06 23.
Article in English | MEDLINE | ID: mdl-34125548

ABSTRACT

The functionalization of nanoparticles with functional moieties is a key strategy to achieve cell targeting in nanomedicine. The interplay between size and ligand number is crucial for the formulation performance and needs to be properly characterized to understand nanoparticle structure-activity relations. However, there is a lack of methods able to measure both size and ligand number at the same time and at the single particle level. Here, we address this issue by introducing a correlative light and electron microscopy (CLEM) method combining super-resolution microscopy (SRM) and transmission electron microscopy (TEM) imaging. We apply our super-resCLEM method to characterize the relationship between size and ligand number and density in PLGA-PEG nanoparticles. We highlight how heterogeneity found in size can impact ligand distribution and how a significant part of the nanoparticle population goes completely undetected in the single-technique analysis. Super-resCLEM holds great promise for the multiparametric analysis of other parameters and nanomaterials.


Subject(s)
Nanoparticles , Ligands , Microscopy, Electron, Transmission , Microscopy, Fluorescence
20.
Nanomaterials (Basel) ; 11(6)2021 May 25.
Article in English | MEDLINE | ID: mdl-34070690

ABSTRACT

Mapping the dielectric properties of cells with nanoscale spatial resolution can be an important tool in nanomedicine and nanotoxicity analysis, which can complement structural and mechanical nanoscale measurements. Recently we have shown that dielectric constant maps can be obtained on dried fixed cells in air environment by means of scanning dielectric force volume microscopy. Here, we demonstrate that such measurements can also be performed in the much more challenging case of fixed cells in liquid environment. Performing the measurements in liquid media contributes to preserve better the structure of the fixed cells, while also enabling accessing the local dielectric properties under fully hydrated conditions. The results shown in this work pave the way to address the nanoscale dielectric imaging of living cells, for which still further developments are required, as discussed here.

SELECTION OF CITATIONS
SEARCH DETAIL
...