Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell Rep ; : 114674, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39299237

ABSTRACT

Innate immunity in bacteria, plants, and animals requires the specialized subset of Toll/interleukin-1/resistance gene (TIR) domain proteins that are nicotinamide adenine dinucleotide (NAD+) hydrolases. Aggregation of these TIR proteins engages their enzymatic activity, but it is unknown how this protein multimerization is regulated. Here, we discover that TIR oligomerization is controlled to prevent immune toxicity. We find that p38 propagates its own activation in a positive feedback loop, which promotes the aggregation of the lone enzymatic TIR protein in the nematode C. elegans (TIR-1, homologous to human sterile alpha and TIR motif-containing 1 [SARM1]). We perform a forward genetic screen to determine how the p38 positive feedback loop is regulated. We discover that the integrity of the specific lysosomal subcompartment that expresses TIR-1 is actively maintained to limit inappropriate TIR-1 aggregation on the membranes of these organelles, which restrains toxic propagation of p38 innate immunity. Thus, innate immunity in C. elegans intestinal epithelial cells is regulated by specific control of TIR-1 multimerization.

2.
Immunity ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39299238

ABSTRACT

Toll/interleukin-1/resistance (TIR)-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that the lone enzymatic TIR-domain protein in the nematode C. elegans (TIR-1, homolog of mammalian sterile alpha and TIR motif-containing 1 [SARM1]) was strategically expressed on the membranes of a specific intracellular compartment called lysosome-related organelles. The positioning of TIR-1 on lysosome-related organelles enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. A virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed lysosome-related organelles. This pathogen-induced morphological change in lysosome-related organelles triggered TIR-1 multimerization, which engaged its intrinsic NAD+ hydrolase (NADase) activity to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, TIR-1 is a guard protein in an effector-triggered immune response, which enables intestinal epithelial cells to survey for pathogen-induced host damage.

3.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38106043

ABSTRACT

TIR-domain proteins with enzymatic activity are essential for immunity in plants, animals, and bacteria. However, it is not known how these proteins function in pathogen sensing in animals. We discovered that a TIR-domain protein (TIR-1/SARM1) is strategically expressed on the membranes of a lysosomal sub-compartment, which enables intestinal epithelial cells in the nematode C. elegans to survey for pathogen effector-triggered host damage. We showed that a redox active virulence effector secreted by the bacterial pathogen Pseudomonas aeruginosa alkalinized and condensed a specific subset of lysosomes by inducing intracellular oxidative stress. Concentration of TIR-1/SARM1 on the surface of these organelles triggered its multimerization, which engages its intrinsic NADase activity, to activate the p38 innate immune pathway and protect the host against microbial intoxication. Thus, lysosomal TIR-1/SARM1 is a sensor for oxidative stress induced by pathogenic bacteria to activate metazoan intestinal immunity.

4.
PLoS Pathog ; 19(10): e1011730, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37906605

ABSTRACT

Sphingolipids are required for diverse biological functions and are degraded by specific catabolic enzymes. However, the mechanisms that regulate sphingolipid catabolism are not known. Here we characterize a transcriptional axis that regulates sphingolipid breakdown to control resistance against bacterial infection. From an RNAi screen for transcriptional regulators of pathogen resistance in the nematode C. elegans, we identified the nuclear hormone receptor nhr-66, a ligand-gated transcription factor homologous to human hepatocyte nuclear factor 4. Tandem chromatin immunoprecipitation-sequencing and RNA sequencing experiments revealed that NHR-66 is a transcriptional repressor, which directly targets sphingolipid catabolism genes. Transcriptional de-repression of two sphingolipid catabolic enzymes in nhr-66 loss-of-function mutants drives the breakdown of sphingolipids, which enhances host susceptibility to infection with the bacterial pathogen Pseudomonas aeruginosa. These data define transcriptional control of sphingolipid catabolism in the regulation of cellular sphingolipids, a process that is necessary for pathogen resistance.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Sphingolipids/genetics , Sphingolipids/metabolism
5.
Elife ; 122023 08 22.
Article in English | MEDLINE | ID: mdl-37606250

ABSTRACT

Biguanides, including the world's most prescribed drug for type 2 diabetes, metformin, not only lower blood sugar, but also promote longevity in preclinical models. Epidemiologic studies in humans parallel these findings, indicating favorable effects of metformin on longevity and on reducing the incidence and morbidity associated with aging-related diseases. Despite this promise, the full spectrum of molecular effectors responsible for these health benefits remains elusive. Through unbiased screening in Caenorhabditis elegans, we uncovered a role for genes necessary for ether lipid biosynthesis in the favorable effects of biguanides. We demonstrate that biguanides prompt lifespan extension by stimulating ether lipid biogenesis. Loss of the ether lipid biosynthetic machinery also mitigates lifespan extension attributable to dietary restriction, target of rapamycin (TOR) inhibition, and mitochondrial electron transport chain inhibition. A possible mechanistic explanation for this finding is that ether lipids are required for activation of longevity-promoting, metabolic stress defenses downstream of the conserved transcription factor skn-1/Nrf. In alignment with these findings, overexpression of a single, key, ether lipid biosynthetic enzyme, fard-1/FAR1, is sufficient to promote lifespan extension. These findings illuminate the ether lipid biosynthetic machinery as a novel therapeutic target to promote healthy aging.


Metformin is the drug most prescribed to treat type 2 diabetes around the world and has been in clinical use since 1950. The drug belongs to a family of compounds known as biguanides which reduce blood sugar, making them an effective treatment against type 2 diabetes. More recently, biguanides have been found to have other health benefits, including limiting the growth of various cancer cells and improving the lifespan and long-term health of several model organisms. Epidemiologic studies also suggest that metformin may increase the lifespan of humans and reduce the incidence of age-related illnesses such as cardiovascular disease, cancer and dementia. Given the safety and effectiveness of metformin, understanding how it exerts these desirable effects may allow scientists to discover new mechanisms to promote healthy aging. The roundworm Caenorhabditis elegans is an ideal organism for studying the lifespan-extending effects of metformin. It has an average lifespan of two weeks, a genome that is relatively easy to manipulate, and a transparent body that enables scientists to observe cellular and molecular events in living worms. To discover the genes that enable metformin's lifespan-extending properties, Cedillo, Ahsan et al. systematically switched off the expression of about 1,000 genes involved in C. elegans metabolism. They then screened for genes which impaired the action of biguanides when inactivated. This ultimately led to the identification of a set of genes involved in promoting a longer lifespan. Cedillo, Ahsan et al. then evaluated how these genes impacted other well-described pathways involved in longevity and stress responses. The analysis indicated that a biguanide drug called phenformin (which is similar to metformin) increases the synthesis of ether lipids, a class of fats that are critical components of cellular membranes. Indeed, genetically mutating the three major enzymes required for ether lipid production stopped the biguanide from extending the worms' lifespans. Critically, inactivating these genes also prevented lifespan extension through other known strategies, such as dietary restriction and inhibiting the cellular organelle responsible for producing energy. Cedillo, Ahsan et al. also showed that increasing ether lipid production alters the activity of a well-known longevity and stress response factor called SKN-1, and this change alone is enough to extend the lifespan of worms. These findings suggest that promoting the production of ether lipids could lead to healthier aging. However, further studies, including clinical trials, will be required to determine whether this is a viable approach to promote longevity and health in humans.


Subject(s)
Antimalarials , Diabetes Mellitus, Type 2 , Metformin , Humans , Animals , Caenorhabditis elegans/genetics , Longevity , Ethyl Ethers , Ethers , Lipids
6.
STAR Protoc ; 4(3): 102477, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37527042

ABSTRACT

The Caenorhabditis elegans genome encodes a greatly expanded number of nuclear hormone receptors, many of which remain orphaned. Here, we present a protocol to assess ligand-receptor binding in C. elegans using an adapted cellular thermal shift assay and isothermal dose response. We describe steps for growing C. elegans and preparing lysates and compounds. We also detail how to perform and quantify these assays. This protocol can be used to study any soluble receptor. For complete details on the use and execution of this protocol, please refer to Peterson et al. (2023).1.


Subject(s)
Biological Assay , Caenorhabditis elegans , Animals , Ligands
7.
Immunity ; 56(4): 768-782.e9, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36804958

ABSTRACT

Distinguishing infectious pathogens from harmless microorganisms is essential for animal health. The mechanisms used to identify infectious microbes are not fully understood, particularly in metazoan hosts that eat bacteria as their food source. Here, we characterized a non-canonical pattern-recognition system in Caenorhabditis elegans (C. elegans) that assesses the relative threat of virulent Pseudomonas aeruginosa (P. aeruginosa) to activate innate immunity. We discovered that the innate immune response in C. elegans was triggered by phenazine-1-carboxamide (PCN), a toxic metabolite produced by pathogenic strains of P. aeruginosa. We identified the nuclear hormone receptor NHR-86/HNF4 as the PCN sensor in C. elegans and validated that PCN bound to the ligand-binding domain of NHR-86/HNF4. Activation of NHR-86/HNF4 by PCN directly engaged a transcriptional program in intestinal epithelial cells that protected against P. aeruginosa. Thus, a bacterial metabolite is a pattern of pathogenesis surveilled by nematodes to identify a pathogen in its bacterial diet.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Receptors, Cytoplasmic and Nuclear/metabolism , Immunity, Innate , Bacteria , Pseudomonas aeruginosa/metabolism
8.
Elife ; 112022 01 31.
Article in English | MEDLINE | ID: mdl-35098926

ABSTRACT

Intracellular signaling regulators can be concentrated into membrane-free, higher ordered protein assemblies to initiate protective responses during stress - a process known as phase transition. Here, we show that a phase transition of the Caenorhabditis elegans Toll/interleukin-1 receptor domain protein (TIR-1), an NAD+ glycohydrolase homologous to mammalian sterile alpha and TIR motif-containing 1 (SARM1), underlies p38 PMK-1 immune pathway activation in C. elegans intestinal epithelial cells. Through visualization of fluorescently labeled TIR-1/SARM1 protein, we demonstrate that physiologic stresses, both pathogen and non-pathogen, induce multimerization of TIR-1/SARM1 into visible puncta within intestinal epithelial cells. In vitro enzyme kinetic analyses revealed that, like mammalian SARM1, the NAD+ glycohydrolase activity of C. elegans TIR-1 is dramatically potentiated by protein oligomerization and a phase transition. Accordingly, C. elegans with genetic mutations that specifically block either multimerization or the NAD+ glycohydrolase activity of TIR-1/SARM1 fail to induce p38 PMK phosphorylation, are unable to increase immune effector expression, and are dramatically susceptible to bacterial infection. Finally, we demonstrate that a loss-of-function mutation in nhr-8, which alters cholesterol metabolism and is used to study conditions of sterol deficiency, causes TIR-1/SARM1 to oligomerize into puncta in intestinal epithelial cells. Cholesterol scarcity increases p38 PMK-1 phosphorylation, primes immune effector induction in a manner that requires TIR-1/SARM1 oligomerization and its intrinsic NAD+ glycohydrolase activity, and reduces pathogen accumulation in the intestine during a subsequent infection. These data reveal a new adaptive response that allows a metazoan host to anticipate pathogen threats during cholesterol deprivation, a time of relative susceptibility to infection. Thus, a phase transition of TIR-1/SARM1 as a prerequisite for its NAD+ glycohydrolase activity is strongly conserved across millions of years of evolution and is essential for diverse physiological processes in multiple cell types.


From worms to humans, animals have developed various strategies ­ including immune defences ­ to shield themselves from disease-causing microbes. A type of roundworm, called C. elegans, lives in environments rich in microbes, so it needs effective immune defences to protect itself. The roundworms share a key regulatory pathway with mammals that helps to control their immune responses. This so-called p38 pathway relies on proteins that interact with each other to activate protective immune defences. Proteins contain different regions or domains that can give them a certain function. For example, proteins with a region called TIR play important roles in immune defences in both animals and plants. One such protein, called SARM1, is unique among animal and plant proteins in that it is an enzyme, which cleaves an important metabolite in the cell. In C. elegans, the SARM1 homolog, TIR-1, controls the p38 pathway during infection, but how TIR-1 activates it is unclear. To find out more, Peterson, Icso et al. modified C. elegans to generate a fluorescent form of TIR-1 and infected the worms with bacteria. Imaging techniques revealed that infection caused TIR-1 in gut cells to cluster into organized structures, which increases the enzymatic activity of the protein to activate the p38 immune pathway. Moreover, stress situations, such as cholesterol nutrient withdrawal, activated the p38 pathway in the same way. This adaptive stress response allows the animal to defend itself against pathogen threats during times, when they are most susceptible to infections. Cells in the gut provide a primary line of defence against infectious bacteria and are important for maintaining a healthy gut immune system. When the mechanisms for pathogen sensing and immune maintenance are disrupted, it can lead to inflammation and higher risk of infection. Peterson, Icso et al. show how a key regulator of gut immunity, TIR-1, provides protection in C. elegans, which may suggest that SARM1 could have a similar role in mammals.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cholesterol/metabolism , Mammals/metabolism , NAD/metabolism , NAD+ Nucleosidase/metabolism
9.
Open Forum Infect Dis ; 8(3): ofab041, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728358

ABSTRACT

Long-term antibiotics are not effective for the therapy of patients with persistent symptoms and a history of Lyme disease. However, some clinicians still prescribe these therapies. We present a case of peripherally inserted central catheter-associated Nocardia nova endocarditis in a patient who had been receiving intravenous antibiotics for the management of chronic Lyme disease. This case highlights an important risk associated with the unscientific use of indwelling peripheral catheters and intravenous antibiotics for the management of such patients.

11.
Methods Mol Biol ; 2144: 145-160, 2020.
Article in English | MEDLINE | ID: mdl-32410032

ABSTRACT

The microscopic nematode Caenorhabditis elegans has emerged as a powerful system to characterize evolutionarily ancient mechanisms of pathogen sensing, innate immune activation, and protective host responses. Experimentally, C. elegans can be infected with a wide variety of human pathogens, as well as with natural pathogens of worms that were isolated from wild-caught nematodes. Here, we focus on an experimental model of bacterial pathogenesis that utilizes the human opportunistic bacterial pathogen Pseudomonas aeruginosa and present an algorithm that can be used to study mechanisms of immune function in nematodes. An initial comparison of the susceptibility of a C. elegans mutant to P. aeruginosa infection with its normal lifespan permits an understanding of a mutant's effect on pathogen susceptibility in the context of potential pleotropic consequences on general worm fitness. Assessing the behavior of nematodes in the presence of P. aeruginosa can also help determine if a gene of interest modulates pathogen susceptibility by affecting the host's ability to avoid a pathogen. In addition, quantification of the pathogen load in the C. elegans intestine during infection, characterization of immune effector transcription that are regulated by host defense pathways and an initial assessment of tissue specificity of immune gene function can refine hypotheses about the mechanism of action of a gene of interest. Together, these protocols offer one approach to characterize novel host defense mechanisms in a simple metazoan host.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/immunology , Immunity, Innate/genetics , Molecular Biology/methods , Animals , Biological Evolution , Caenorhabditis elegans/microbiology , Caenorhabditis elegans Proteins/immunology , Humans , Immune System Phenomena/genetics , Nematoda/immunology , Pseudomonas aeruginosa/immunology , Pseudomonas aeruginosa/pathogenicity
12.
Cell Rep ; 31(1): 107478, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268082

ABSTRACT

Olfactory neurons allow animals to discriminate nutritious food sources from potential pathogens. From a forward genetic screen, we uncovered a surprising requirement for the olfactory neuron gene olrn-1 in the regulation of intestinal epithelial immunity in Caenorhabditis elegans. During nematode development, olrn-1 is required to program the expression of odorant receptors in the AWC olfactory neuron pair. Here, we show that olrn-1 also functions in AWC neurons in the cell non-autonomous suppression of the canonical p38 MAPK PMK-1 immune pathway in the intestine. Low activity of OLRN-1, which activates the p38 MAPK signaling cassette in AWC neurons during larval development, also de-represses the p38 MAPK PMK-1 pathway in the intestine to promote immune effector transcription, increased clearance of an intestinal pathogen, and resistance to bacterial infection. These data reveal an unexpected connection between olfactory receptor development and innate immunity and show that anti-pathogen defenses in the intestine are developmentally programmed.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Immunity, Innate/immunology , Membrane Proteins/metabolism , Animals , Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/immunology , Immunity, Innate/genetics , MAP Kinase Signaling System , Membrane Proteins/genetics , Mitogen-Activated Protein Kinases/immunology , Mitogen-Activated Protein Kinases/metabolism , Neurogenesis , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Smell , Transcription Factors/metabolism , p38 Mitogen-Activated Protein Kinases/immunology , p38 Mitogen-Activated Protein Kinases/metabolism
13.
Proc Natl Acad Sci U S A ; 116(44): 22322-22330, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31611372

ABSTRACT

Early host responses toward pathogens are essential for defense against infection. In Caenorhabditis elegans, the transcription factor, SKN-1, regulates cellular defenses during xenobiotic intoxication and bacterial infection. However, constitutive activation of SKN-1 results in pleiotropic outcomes, including a redistribution of somatic lipids to the germline, which impairs health and shortens lifespan. Here, we show that exposing C. elegans to Pseudomonas aeruginosa similarly drives the rapid depletion of somatic, but not germline, lipid stores. Modulating the epigenetic landscape refines SKN-1 activity away from innate immunity targets, which alleviates negative metabolic outcomes. Similarly, exposure to oxidative stress redirects SKN-1 activity away from pathogen response genes while restoring somatic lipid distribution. In addition, activating p38/MAPK signaling in the absence of pathogens, is sufficient to drive SKN-1-dependent loss of somatic fat. These data define a SKN-1- and p38-dependent axis for coordinating pathogen responses, lipid homeostasis, and survival and identify transcriptional redirection, rather than inactivation, as a mechanism for counteracting the pleiotropic consequences of aberrant transcriptional activity.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Lipid Metabolism , Pseudomonas Infections/genetics , Transcription Factors/metabolism , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , DNA-Binding Proteins/genetics , Immunity, Innate , MAP Kinase Signaling System , Oxidative Stress , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/pathogenicity , Transcription Factors/genetics , Transcriptome , p38 Mitogen-Activated Protein Kinases/metabolism
14.
PLoS Pathog ; 15(6): e1007893, 2019 06.
Article in English | MEDLINE | ID: mdl-31206555

ABSTRACT

Fatty acids affect a number of physiological processes, in addition to forming the building blocks of membranes and body fat stores. In this study, we uncover a role for the monounsaturated fatty acid oleate in the innate immune response of the nematode Caenorhabditis elegans. From an RNAi screen for regulators of innate immune defense genes, we identified the two stearoyl-coenzyme A desaturases that synthesize oleate in C. elegans. We show that the synthesis of oleate is necessary for the pathogen-mediated induction of immune defense genes. Accordingly, C. elegans deficient in oleate production are hypersusceptible to infection with diverse human pathogens, which can be rescued by the addition of exogenous oleate. However, oleate is not sufficient to drive protective immune activation. Together, these data add to the known health-promoting effects of monounsaturated fatty acids, and suggest an ancient link between nutrient stores, metabolism, and host susceptibility to bacterial infection.


Subject(s)
Bacterial Infections/immunology , Caenorhabditis elegans/immunology , Immunity, Innate/drug effects , Oleic Acids/pharmacology , Animals , Oleic Acids/immunology
15.
Proc Natl Acad Sci U S A ; 116(13): 6146-6151, 2019 03 26.
Article in English | MEDLINE | ID: mdl-30850535

ABSTRACT

Mitochondria generate most cellular energy and are targeted by multiple pathogens during infection. In turn, metazoans employ surveillance mechanisms such as the mitochondrial unfolded protein response (UPRmt) to detect and respond to mitochondrial dysfunction as an indicator of infection. The UPRmt is an adaptive transcriptional program regulated by the transcription factor ATFS-1, which induces genes that promote mitochondrial recovery and innate immunity. The bacterial pathogen Pseudomonas aeruginosa produces toxins that disrupt oxidative phosphorylation (OXPHOS), resulting in UPRmt activation. Here, we demonstrate that Pseudomonas aeruginosa exploits an intrinsic negative regulatory mechanism mediated by the Caenorhabditis elegans bZIP protein ZIP-3 to repress UPRmt activation. Strikingly, worms lacking zip-3 were impervious to Pseudomonas aeruginosa-mediated UPRmt repression and resistant to infection. Pathogen-secreted phenazines perturbed mitochondrial function and were the primary cause of UPRmt activation, consistent with these molecules being electron shuttles and virulence determinants. Surprisingly, Pseudomonas aeruginosa unable to produce phenazines and thus elicit UPRmt activation were hypertoxic in zip-3-deletion worms. These data emphasize the significance of virulence-mediated UPRmt repression and the potency of the UPRmt as an antibacterial response.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/microbiology , Mitochondria/metabolism , Pseudomonas Infections/metabolism , Transcription Factors/metabolism , Unfolded Protein Response , Animals , Caenorhabditis elegans/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Ubiquitin-Protein Ligases/metabolism
16.
PLoS Genet ; 15(1): e1007935, 2019 01.
Article in English | MEDLINE | ID: mdl-30668573

ABSTRACT

Nuclear hormone receptors (NHRs) are ligand-gated transcription factors that control adaptive host responses following recognition of specific endogenous or exogenous ligands. Although NHRs have expanded dramatically in C. elegans compared to other metazoans, the biological function of only a few of these genes has been characterized in detail. Here, we demonstrate that an NHR can activate an anti-pathogen transcriptional program. Using genetic epistasis experiments, transcriptome profiling analyses and chromatin immunoprecipitation-sequencing, we show that, in the presence of an immunostimulatory small molecule, NHR-86 binds to the promoters of immune effectors to activate their transcription. NHR-86 is not required for resistance to the bacterial pathogen Pseudomonas aeruginosa at baseline, but activation of NHR-86 by this compound drives a transcriptional program that provides protection against this pathogen. Interestingly, NHR-86 targets immune effectors whose basal regulation requires the canonical p38 MAPK PMK-1 immune pathway. However, NHR-86 functions independently of PMK-1 and modulates the transcription of these infection response genes directly. These findings characterize a new transcriptional regulator in C. elegans that can induce a protective host response towards a bacterial pathogen.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Immunity, Innate/genetics , Mitogen-Activated Protein Kinases/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Amino Acid Sequence/genetics , Animals , Caenorhabditis elegans/microbiology , Gene Expression Regulation , Mutation , Pseudomonas aeruginosa/pathogenicity , p38 Mitogen-Activated Protein Kinases/genetics
17.
PLoS Genet ; 14(11): e1007812, 2018 11.
Article in English | MEDLINE | ID: mdl-30485261

ABSTRACT

S-adenosylmethionine (SAM) is a donor which provides the methyl groups for histone or nucleic acid modification and phosphatidylcholine production. SAM is hypothesized to link metabolism and chromatin modification, however, its role in acute gene regulation is poorly understood. We recently found that Caenorhabditis elegans with reduced SAM had deficiencies in H3K4 trimethylation (H3K4me3) at pathogen-response genes, decreasing their expression and limiting pathogen resistance. We hypothesized that SAM may be generally required for stress-responsive transcription. Here, using genetic assays, we show that transcriptional responses to bacterial or xenotoxic stress fail in C. elegans with low SAM, but that expression of heat shock genes are unaffected. We also found that two H3K4 methyltransferases, set-2/SET1 and set-16/MLL, had differential responses to survival during stress. set-2/SET1 is specifically required in bacterial responses, whereas set-16/MLL is universally required. These results define a role for SAM in the acute stress-responsive gene expression. Finally, we find that modification of metabolic gene expression correlates with enhanced survival during stress.


Subject(s)
Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , S-Adenosylmethionine/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans Proteins/antagonists & inhibitors , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Genes, Helminth , Heat-Shock Response/genetics , Histone Code/genetics , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Pseudomonas aeruginosa/pathogenicity , RNA Interference , Stress, Physiological
18.
Curr Opin Immunol ; 54: 59-65, 2018 10.
Article in English | MEDLINE | ID: mdl-29935375

ABSTRACT

New classes of antimicrobials that are effective therapies for infections with multi-drug resistant pathogens are urgently needed. The nematode Caenorhabditis elegans has been incorporated into small molecule screening platforms to identify anti-infective compounds that provide protection of a host during infection. The use of a live animal in these screening systems offers several advantages, including the ability to identify molecules that boost innate immune responses in a manner advantageous to host survival and compounds that disrupt bacterial virulence mechanisms. In addition, new classes of antimicrobials that target the pathogen have been uncovered, as well as interesting chemical probes that can be used to dissect new mechanisms of host-pathogen interactions.


Subject(s)
Anti-Infective Agents/pharmacology , Caenorhabditis elegans/drug effects , High-Throughput Screening Assays , Animals , Caenorhabditis elegans/immunology , Humans
20.
G3 (Bethesda) ; 6(3): 541-9, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26818074

ABSTRACT

Inappropriate activation of innate immune responses in intestinal epithelial cells underlies the pathophysiology of inflammatory disorders of the intestine. Here we examine the physiological effects of immune hyperactivation in the intestine of the nematode Caenorhabditis elegans. We previously identified an immunostimulatory xenobiotic that protects C. elegans from bacterial infection by inducing immune effector expression via the conserved p38 MAP kinase pathway, but was toxic to nematodes developing in the absence of pathogen. To investigate a possible connection between the toxicity and immunostimulatory properties of this xenobiotic, we conducted a forward genetic screen for C. elegans mutants that are resistant to the deleterious effects of the compound, and identified five toxicity suppressors. These strains contained hypomorphic mutations in each of the known components of the p38 MAP kinase cassette (tir-1, nsy-1, sek-1, and pmk-1), demonstrating that hyperstimulation of the p38 MAPK pathway is toxic to animals. To explore mechanisms of immune pathway regulation in C. elegans, we conducted another genetic screen for dominant activators of the p38 MAPK pathway, and identified a single allele that had a gain-of-function (gf) mutation in nsy-1, the MAP kinase kinase kinase that acts upstream of p38 MAPK pmk-1. The nsy-1(gf) allele caused hyperinduction of p38 MAPK PMK-1-dependent immune effectors, had greater levels of phosphorylated p38 MAPK, and was more resistant to killing by the bacterial pathogen Pseudomonas aeruginosa compared to wild-type controls. In addition, the nsy-1(gf) mutation was toxic to developing animals. Together, these data suggest that the activity of the MAPKKK NSY-1 is tightly regulated as part of a physiological mechanism to control p38 MAPK-mediated innate immune hyperactivation, and ensure cellular homeostasis in C. elegans.


Subject(s)
Caenorhabditis elegans/immunology , Caenorhabditis elegans/metabolism , Immunity, Innate , p38 Mitogen-Activated Protein Kinases/metabolism , Alleles , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Enzyme Activation , Gene Expression , Genetic Variation , MAP Kinase Signaling System , Mutation , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA Interference , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL