Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
2.
Cell Death Dis ; 15(2): 113, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38321003

ABSTRACT

Understanding the mechanisms of breast cancer cell communication underlying cell spreading and metastasis formation is fundamental for developing new therapies. ID4 is a proto-oncogene overexpressed in the basal-like subtype of triple-negative breast cancer (TNBC), where it promotes angiogenesis, cancer stem cells, and BRACA1 misfunction. Here, we show that ID4 expression in BC cells correlates with the activation of motility pathways and promotes the production of VEGFA, which stimulates the interaction of VEGFR2 and integrin ß3 in a paracrine fashion. This interaction induces the downstream focal adhesion pathway favoring migration, invasion, and stress fiber formation. Furthermore, ID4/ VEGFA/ VEGFR2/ integrin ß3 signaling stimulates the nuclear translocation and activation of the Hippo pathway member's YAP and TAZ, two critical executors for cancer initiation and progression. Our study provides new insights into the oncogenic roles of ID4 in tumor cell migration and YAP/TAZ pathway activation, suggesting VEGFA/ VEGFR2/ integrin ß3 axis as a potential target for BC treatment.


Subject(s)
Breast Neoplasms , Integrin beta3 , Humans , Female , Integrin beta3/metabolism , Cell Line, Tumor , Signal Transduction , Hippo Signaling Pathway , Vascular Endothelial Growth Factor A , Inhibitor of Differentiation Proteins
3.
Mol Cancer ; 22(1): 192, 2023 11 30.
Article in English | MEDLINE | ID: mdl-38031025

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors (ICIs) are a therapeutic strategy for various cancers although only a subset of patients respond to the therapy. Identifying patients more prone to respond to ICIs may increase the therapeutic benefit and allow studying new approaches for resistant patients. METHODS: We analyzed the TCGA cohort of HNSCC patients in relation to their activation of 26 immune gene expression signatures, as well as their cell type composition, in order to define signaling pathways associated with resistance to ICIs. Results were validated on two cohorts of 102 HNSCC patients and 139 HNSCC patients under treatment with PD-L1 inhibitors, respectively, and a cohort of 108 HNSCC HPV negative patients and by in vitro experiments in HNSCC cell lines. RESULTS: We observed a significant association between the gene set and TP53 gene status and OS and PFS of HNSCC patients. Surprisingly, the presence of a TP53 mutation together with another co-driver mutation was associated with significantly higher levels of the immune gene expression, in comparison to tumors in which the TP53 gene was mutated alone. In addition, the higher level of TP53 mutated-dependent MYC signature was associated with lower levels of the immune gene expression signature. In vitro and three different patient cohorts validation analyses corroborated these findings. CONCLUSIONS: Immune gene signature sets associated with TP53 status and co-mutations classify with more accuracy HNSCC patients. These biomarkers may be easily implemented in clinical setting.


Subject(s)
Head and Neck Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Head and Neck Neoplasms/genetics , Cohort Studies , Signal Transduction , Mutation , Prognosis , Tumor Suppressor Protein p53/genetics
4.
Neoplasia ; 45: 100937, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37769528

ABSTRACT

The therapeutic scenario of Human Epidermal Growth Factor Receptor 2 positive advanced breast cancer (ABC) has been recently enriched by a number of innovative agents, which are reshaping treatment sequence. While randomized trials have documented an advantage in terms of efficacy, for the newly available agents we lack effectiveness and tolerability evidence from the real-world setting. Similarly, the identification of predictive biomarkers might improve clinical decision. We herein describe the outline of a prospective/retrospective study which aims to explore the optimal sequence of treatment in HER2+, pertuzumab pre-treated ABC patients treated in II line with anti-HER2 agents in clinical practice. As part of the pre-clinical tasks envisioned by the STEP study, in vitro cell models of resistance were exploited to investigate molecular features associated with reduced efficacy of HER2 targeting agents at the transcript level. The aggressive behavior of resistant cell populations was measured by growth assessment in mouse models. This approach led to the identification of DARPP-32 and t-DARPP proteins as possible predictive biomarkers of efficacy of anti-HER2 agents. Biomarkers validation and the clinical goals will be reached through patients' inclusion into two independent cohorts, i.e., the prospective and retrospective cohorts, whose setup is currently ongoing.


Subject(s)
Breast Neoplasms , Mice , Animals , Humans , Female , Trastuzumab/therapeutic use , Retrospective Studies , Prospective Studies , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Dopamine and cAMP-Regulated Phosphoprotein 32 , Biomarkers , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Antineoplastic Combined Chemotherapy Protocols
5.
Cancers (Basel) ; 15(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37627209

ABSTRACT

Breast cancer is one of the most frequent causes of cancer death among women worldwide. In particular, triple-negative breast cancer (TNBC) represents the most aggressive breast cancer subtype because it is characterized by the absence of molecular targets, thus making it an orphan type of malignancy. The discovery of new molecular druggable targets is mandatory to improve treatment success. In that context, non-coding RNAs represent an opportunity for modulation of cancer. They are RNA molecules with apparently no protein coding potential, which have been already demonstrated to play pivotal roles within cells, being involved in different processes, such as proliferation, cell cycle regulation, apoptosis, migration, and diseases, including cancer. Accordingly, they could be used as targets for future TNBC personalized therapy. Moreover, the peculiar characteristics of non-coding RNAs make them reliable biomarkers to monitor cancer treatment, thus, to monitor recurrence or chemoresistance, which are the most challenging aspects in TNBC. In the present review, we focused on the oncogenic or oncosuppressor role of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) mostly involved in TNBC, highlighting their mode of action and depicting their potential role as a biomarker and/or as targets of new non-coding RNA-based therapeutics.

6.
Cell Death Dis ; 14(8): 535, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37598177

ABSTRACT

Hyperthermic intraperitoneal administration of chemotherapy (HIPEC) increases local drug concentrations and reduces systemic side effects associated with prolonged adjuvant intraperitoneal exposure in patients affected by either peritoneal malignancies or metastatic diseases originating from gastric, colon, kidney, and ovarian primary tumors. Mechanistically, the anticancer effects of HIPEC have been poorly explored. Herein we documented that HIPEC treatment promoted miR-145-5p expression paired with a significant downregulation of its oncogenic target genes c-MYC, EGFR, OCT4, and MUC1 in a pilot cohort of patients with ovarian peritoneal metastatic lesions. RNA sequencing analyses of ovarian peritoneal metastatic nodules from HIPEC treated patients unveils HSF-1 as a transcriptional regulator factor of miR-145-5p expression. Notably, either depletion of HSF-1 expression or chemical inhibition of its transcriptional activity impaired miR-145-5p tumor suppressor activity and the response to cisplatin in ovarian cancer cell lines incubated at 42 °C. In aggregate, our findings highlight a novel transcriptional network involving HSF-1, miR145-5p, MYC, EGFR, MUC1, and OCT4 whose proper activity contributes to HIPEC anticancer efficacy in the treatment of ovarian metastatic peritoneal lesions.


Subject(s)
MicroRNAs , Ovarian Neoplasms , Humans , Female , Hyperthermic Intraperitoneal Chemotherapy , Genes, myc , Heat Shock Transcription Factors/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Transcription Factors/genetics , Cell Line , ErbB Receptors , MicroRNAs/genetics
7.
J Exp Clin Cancer Res ; 42(1): 189, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37507791

ABSTRACT

The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/genetics , Neoplasms/therapy , Precision Medicine , Biomarkers , Medical Oncology , Italy
8.
J Exp Clin Cancer Res ; 42(1): 170, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37460938

ABSTRACT

BACKGROUND: Approximately 20-50% of patients presenting with localized colorectal cancer progress to stage IV metastatic disease (mCRC) following initial treatment and this is a major prognostic determinant. Here, we have interrogated a heterogeneous set of primary colorectal cancer (CRC), liver CRC metastases and adjacent liver tissue to identify molecular determinants of the colon to liver spreading. Screening Food and Drug Administration (FDA) approved drugs for their ability to interfere with an identified colon to liver metastasis signature may help filling an unmet therapeutic need. METHODS: RNA sequencing of primary colorectal cancer specimens vs adjacent liver tissue vs synchronous and asynchronous liver metastases. Pathways enrichment analyses. The Library of Integrated Network-based Cellular Signatures (LINCS)-based and Connectivity Map (CMAP)-mediated identification of FDA-approved compounds capable to interfere with a 22 gene signature from primary CRC and liver metastases. Testing the identified compounds on CRC-Patient Derived Organoid (PDO) cultures. Microscopy and Fluorescence Activated Cell Sorting (FACS) based analysis of the treated PDOs. RESULTS: We have found that liver metastases acquire features of the adjacent liver tissue while partially losing those of the primary tumors they derived from. We have identified a 22-gene signature differentially expressed among primary tumors and metastases and validated in public databases. A pharmacogenomic screening for FDA-approved compounds capable of interfering with this signature has been performed. We have validated some of the identified representative compounds in CRC-Patient Derived Organoid cultures (PDOs) and found that pentoxyfilline and, to a minor extent, dexketoprofen and desloratadine, can variably interfere with number, size and viability of the CRC -PDOs in a patient-specific way. We explored the pentoxifylline mechanism of action and found that pentoxifylline treatment attenuated the 5-FU elicited increase of ALDHhigh cells by attenuating the IL-6 mediated STAT3 (tyr705) phosphorylation. CONCLUSIONS: Pentoxifylline synergizes with 5-Fluorouracil (5-FU) in attenuating organoid formation. It does so by interfering with an IL-6-STAT3 axis leading to the emergence of chemoresistant ALDHhigh cell subpopulations in 5-FU treated PDOs. A larger cohort of CRC-PDOs will be required to validate and expand on the findings of this proof-of-concept study.


Subject(s)
Colorectal Neoplasms , Liver Neoplasms , Pentoxifylline , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Interleukin-6 , Pentoxifylline/therapeutic use , Fluorouracil/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Organoids
9.
Front Oncol ; 12: 1072579, 2022.
Article in English | MEDLINE | ID: mdl-36531016

ABSTRACT

Introduction: Although a considerable body of knowledge has been accumulated regarding the early diagnosis and treatment of oral squamous cell carcinoma (OSCC), its survival rates have not improved over the last decades. Thus, deciphering the molecular mechanisms governing oral cancer will support the development of even better diagnostic and therapeutic strategies. Previous studies have linked aberrantly expressed microRNAs (miRNAs) with the development of OSCC. Methods: We combined bioinformatical and molecular methods to identify miRNAs with possible clinical significance as biomarkers in OSCC. A set of 10 miRNAs were selected via an in silico approach by analysing the 3'untranslated regions (3'UTRs) of cancer-related mRNAs such as FLRT2, NTRK3, and SLC8A1, TFCP2L1 and etc. RT-qPCR was used to compare the expression of in silico identified miRNAs in OSCC and normal tissues (n=32). Results: Among the screened miRNAs, miR-21-5p (p < 0.0001), miR-93-5p (p < 0.0197), miR-146b-5p (p <0.0012), miR-155-5p (p < 0.0001), miR-182-5p (p < 0.0001) were significantly overexpressed, whereas miR-133b (p < 0.05) was significantly downregulated in OSCC tissues, a scenario confirmed in two additional OSCC validation cohorts: Regina Elena National Cancer Institute (IRE cohort, N=74) and The Cancer Genome Atlas Data Portal (TCGA cohort, N=354). Initial stage tumors (T1, T2) expressed significantly higher levels of miR-133b (p < 0.0004) compared to more advanced ones (T3, T4). Also, we identified miR-93-5p (p < 0.0003), miR-133b (p < 0.0017) and miR-155-5p (p < 0.0004) as correlated with HPV-induced OSCC. The high expression of these 6 miRNAs as a signature predicted shorter disease-free survival (DFS) and could efficiently distinguish OSCC cases from healthy controls with areas under the curve (AUC) of 0.91 with sensitivity and specificity of 0.98 and 0.6, respectively. Further target identification analysis revealed enrichment of genes involved in FOXO, longevity, glycan biosynthesis and p53 cancer-related signaling pathways. Also, the selected targets were underexpressed in OSCC tissues and showed clinical significance related to overall survival (OS) and DFS. Discussion: Our results demonstrate that a novel panel consisting of miR-21-5p, miR-93-5p, miR-133b, miR-146b-5p, miR-155-5p and miR-182-5p could be used as OSCC-specific molecular signature with diagnostic and prognostic significance related to OS and DFS.

10.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498861

ABSTRACT

New evidence on the impact of dysregulation of the CDK4/6 pathway on breast cancer (BC) cell proliferation has led to the development of selective CDK4/6 inhibitors, which have radically changed the management of advanced BC. Despite the improved outcomes obtained by CDK4/6 inhibitors, approximately 10% of tumors show primary resistance, whereas acquired resistance appears to be an almost ubiquitous occurrence, leading to treatment failure. The identification of differentially expressed genes or genomic mutational signatures able to predict sensitivity or resistance to CDK4/6 inhibitors is critical for medical decision making and for avoiding or counteracting primary or acquired resistance against CDK4/6 inhibitors. In this review, we summarize the main mechanisms of resistance to CDK4/6 inhibitors, focusing on those associated with potentially relevant biomarkers that could predict patients' response/resistance to treatment. Recent advances in biomarker identification are discussed, including the potential use of liquid biopsy for BC management and the role of multiple microRNAs as molecular predictors of cancer cell sensitivity and resistance to CDK4/6 inhibitors.


Subject(s)
Breast Neoplasms , MicroRNAs , Protein Kinase Inhibitors , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Liquid Biopsy , MicroRNAs/genetics , MicroRNAs/therapeutic use , Molecular Targeted Therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Purines/pharmacology
11.
J Exp Clin Cancer Res ; 41(1): 255, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987988

ABSTRACT

BACKGROUND: Malignant pleural mesothelioma is a highly aggressive tumor associated with asbestos exposure. There are few effective treatment options for mesothelioma, and patients have a very poor prognosis. Mesothelioma has the potential to represent an appropriate disease to prevent because of its strong association with asbestos exposure and the long latency from exposure to the disease on-set. METHODS: In the present study, we tested biological activity and toxicity of an artichoke freeze-dried extract (AWPC) as potential complementary preventive/early stage treatment agent for mesothelioma. This phase II clinical study then was conducted in 18 male-patients with evidence of radiographic characteristics related to asbestos exposure such as asbestosis or benign pleural disease as surrogate disease for mesothelioma clinical model. RESULTS: We investigate AWPC biological activity assessing its effect on mesothelin serum level, a glycoprotein with low expression in normal mesothelial cells and high expression in mesothelioma and asbestos related diseases. We also assess the AWPC effect on circulating miRNAs, as novel biomarkers of both cancer risk and response to therapeutic targets. While we found a small and not significant effect of AWPC on mesothelin serum levels, we observed that AWPC intake modulated 11 serum miRNAs related to gene-pathways connected to mesothelioma etiology and development. In terms of toxicity, we also did not observe any severe adverse effects associated to AWPC treatment, only gastro-intestinal symptoms were reported by five study participants. CONCLUSIONS: We observed an interesting AWPC effect on miRNAs which targets modulate mesothelioma development. New and much larger clinical studies based on follow-up of workers exposed to asbestos are needed to corroborate the role of AWPC in prevention and early treatment of mesothelioma. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02076672 . Registered 03/03/2014.


Subject(s)
Asbestos , Cynara scolymus , Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , MicroRNAs , Pleural Neoplasms , Asbestos/toxicity , Biomarkers, Tumor , GPI-Linked Proteins/genetics , Humans , Lung Neoplasms/etiology , Male , Mesothelin , Mesothelioma/drug therapy , Mesothelioma/genetics , MicroRNAs/genetics , Pleural Neoplasms/drug therapy , Pleural Neoplasms/genetics
12.
Commun Biol ; 5(1): 598, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710947

ABSTRACT

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/genetics , Protein Isoforms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
13.
Mol Cancer ; 21(1): 33, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35090471

ABSTRACT

The role of circular RNAs in oncogenesis has begun to be widely studied in recent years, due to the significant impact that these molecules have in disease pathogenesis, as well as their potential for the future of innovative therapies. Moreover, due to their characteristically circular shape, circular RNAs are very resistant molecules to RNA degradation whose levels are easily assessed in body fluids. Accordingly, they represent an opportunity for the discovery of new diagnostic and prognostic markers in a wide range of diseases. Among circular RNAs, circPVT1 is a rather peculiar one that originates from the circularization of the exon 2 of the PVT1 gene that encodes a pro-tumorigenic long non-coding RNA named lncPVT1. There are a few examples of circular RNAs that derive from a locus producing another non-coding RNA. Despite their apparent transcriptional independence, which occurs using two different promoters, a possible synergistic effect in tumorigenesis cannot be excluded considering that both have been reported to correlate with the oncogenic phenotype. This complex mechanism of regulation appears to also be controlled by c-MYC. Indeed, the PVT1 locus is located only 53 Kb downstream c-MYC gene, a well-known oncogene that regulates the expression levels of about 15% of all genes. Here, we review circPVT1 origin and biogenesis highlighting the most important mechanisms through which it plays a fundamental role in oncogenesis, such as the well-known sponge activity on microRNAs, as well as its paradigmatic interactome link with lncPVT1 and c-MYC expression.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Carcinogenesis/genetics , Genes, myc , Humans , MicroRNAs/genetics , Oncogenes , RNA, Circular/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
14.
Biomedicines ; 9(9)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34572265

ABSTRACT

The levels of different classes of extracellular RNAs (exRNAs) remain stable in bodily fluids. The detection of either enriched or depleted specific subsets of salivary microRNAs (miRNAs) has the potential to serve as a non-invasive approach for biomarker development. Thus, salivary miRNAs have emerged as a promising molecular tool for early diagnosis and screening of oral squamous cell carcinoma (OSCC). Total RNA was extracted from saliva supernatant of 33 OSCC patients and 12 controls (discovery set), and the differential expression of 8 cancer-related miRNAs was detected by TaqMan assay. Among the screened miRNAs, miR-30c-5p (p < 0.04) was significantly decreased in OSCC saliva. The same transcriptional behavior of miR30c-5p was observed in an additional validation set. miR-30c-5p showed a significant statistical difference between cases and controls with areas under the curve (AUC) of 0.82 (95% CI: 0.71-0.89). The sensitivity and the specificity of miR-30c-5p were 86% and 74%, respectively. The target identification analysis revealed enrichment of miR-30c-5p targets in p53 and Wnt signaling pathways in OSCC. Additionally, the miR-30c-5p targets had clinical significance related to overall survival. In conclusion, these findings show that downregulated miR-30c-5p has the potential to serve as a novel, non-invasive biomarker for early OSCC detection.

15.
Cancer Lett ; 500: 51-63, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33296708

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths, worldwide. Non-small cell lung cancer (NSCLC) is the most prevalent lung cancer subtype. YAP and TAZ have been implicated in lung cancer by acting as transcriptional co-activators of oncogenes or as transcriptional co-repressors of tumor suppressor genes. Previously we reported that YAP and TAZ regulate microRNAs expression in NSCLC. Among the set of regulated miRNAs, the oncogenic miR-25, 93, and 106b, clustering within the MCM7 gene were selected for further studies. We firstly identified Transforming Growth Factor-ß (TGF-ß) Receptor 2 (TGFBR2), a member of the TGF-ß signaling, as a target of the miRNA cluster, which exhibited prognostic value because of its tumor suppressor activity. We found that YAP/TAZ-mediated repression of TGFBR2 occurs both: post-transcriptionally through the miR-106b-25 cluster and transcriptionally by engaging the EZH2 epigenetic repressor that we reported here as a novel target gene of YAP/TAZ. Furthermore, we document that YAP/TAZ and EZH2 cooperate in lung tumorigenesis by transcriptionally repressing a specific subset of tumor suppressor genes, including TGFBR2. Our findings point to YAP/TAZ and EZH2 as potential therapeutic targets for NSCLC treatment.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Intracellular Signaling Peptides and Proteins/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Transcription Factors/genetics , A549 Cells , Carcinogenesis/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , DNA-Binding Proteins/genetics , Epigenesis, Genetic/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , Minichromosome Maintenance Complex Component 7/genetics , Nuclear Proteins/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , TEA Domain Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Transforming Growth Factor beta1/genetics , Tumor Suppressor Proteins/genetics , YAP-Signaling Proteins
16.
Cell Death Differ ; 28(5): 1493-1511, 2021 05.
Article in English | MEDLINE | ID: mdl-33230261

ABSTRACT

Sperm-associated antigen 5 (SPAG5) is an important driver of the cell mitotic spindle required for chromosome segregation and progression into anaphase. SPAG5 has been identified as an important proliferation marker and chemotherapy-sensitivity predictor, especially in estrogen receptor-negative breast cancer subtypes. Here, we report that SPAG5 is a direct target of miR-10b-3p, and its aberrantly high expression associates with poor disease-free survival in two large cohorts of breast cancer patients. SPAG5 depletion strongly impaired cancer cell cycle progression, proliferation, and migration. Interestingly, high expression of SPAG5 pairs with a YAP/TAZ-activated signature in breast cancer patients. Reassuringly, the depletion of YAP, TAZ, and TEAD strongly reduced SPAG5 expression and diminished its oncogenic effects. YAP, TAZ coactivators, and TEAD transcription factors are key components of the Hippo signaling pathway involved in tumor initiation, progression, and metastasis. Furthermore, we report that SPAG5 is a direct transcriptional target of TEAD/YAP/TAZ, and pharmacological targeting of YAP and TAZ severely reduces SPAG5 expression. Collectively, our data uncover an oncogenic feedback loop, comprising miR-10b-3p, SPAG5, and YAP/TAZ/TEAD, which fuels the aberrant proliferation of breast cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/genetics , Cell Cycle Proteins/metabolism , Transcription Factors/metabolism , Breast Neoplasms/mortality , Cell Proliferation , Female , Humans , Survival Analysis , Transfection
17.
Cell Death Dis ; 11(11): 959, 2020 11 07.
Article in English | MEDLINE | ID: mdl-33161413

ABSTRACT

Long non-coding RNAs are emerging as new molecular players involved in many biological processes, such as proliferation, apoptosis, cell cycle, migration, and differentiation. Their aberrant expression has been reported in variety of diseases. The aim of this study is the identification and functional characterization of clinically relevant lncRNAs responsible for the inhibition of miR-145-5p, a key tumor suppressor in thymic epithelial tumors (TETs). Starting from gene expression analysis by microarray in a cohort of fresh frozen thymic tumors and normal tissues, we identified LINC00174 as upregulated in TET. Interestingly, LINC00174 expression is positively correlated with a 5-genes signature in TETs. Survival analyses, performed on the TCGA dataset, showed that LINC00174 and its associated 5-genes signature are prognostic in TETs. Specifically, we show that LINC00174 favors the expression of SYBU, FEM1B, and SCD5 genes by sponging miR-145-5p, a well-known tumor suppressor microRNA downregulated in a variety of tumors, included TETs. Functionally, LINC00174 impacts on cell migration and lipid metabolism. Specifically, SCD5, one of the LINC00174-associated genes, is implicated in the control of lipid metabolism and promotes thymic cancer cells migration. Our study highlights that LINC00174 and its associated gene signature are relevant prognostic indicators in TETs. Of note, we here show that a key controller of lipid metabolism, SCD5, augments the migration ability of TET cells, creating a link between lipids and motility, and highlighting these pathways as relevant targets for the development of novel therapeutic approaches for TET.


Subject(s)
Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Movement , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Neoplasms, Glandular and Epithelial/pathology , RNA, Long Noncoding/genetics , Thymus Neoplasms/pathology , Apoptosis , Biomarkers, Tumor/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Cell Proliferation , Gene Expression Profiling , Humans , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/metabolism , Prognosis , Survival Rate , Thymus Neoplasms/genetics , Thymus Neoplasms/metabolism , Tumor Cells, Cultured
18.
Cells ; 9(11)2020 11 09.
Article in English | MEDLINE | ID: mdl-33182253

ABSTRACT

Tumor heterogeneity impinges on all the aspects of tumor history, from onset to metastasis and relapse. It is growingly recognized as a propelling force for tumor adaptation to environmental and micro-environmental cues. Metabolic heterogeneity perfectly falls into this process. It strongly contributes to the metabolic plasticity which characterizes cancer cell subpopulations-capable of adaptive switching under stress conditions, between aerobic glycolysis and oxidative phosphorylation-in both a convergent and divergent modality. The mitochondria appear at center-stage in this adaptive process and thus, targeting mitochondria in cancer may prove of therapeutic value. Metformin is the oldest and most used anti-diabetic medication and its relationship with cancer has witnessed rises and falls in the last 30 years. We believe it is useful to revisit the main mechanisms of action of metformin in light of the emerging views on tumor heterogeneity. We first analyze the most consolidated view of its mitochondrial mechanism of action and then we frame the latter in the context of tumor adaptive strategies, cancer stem cell selection, metabolic zonation of tumors and the tumor microenvironment. This may provide a more critical point of view and, to some extent, may help to shed light on some of the controversial evidence for metformin's anticancer action.


Subject(s)
Genetic Heterogeneity , Metformin/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Humans , Metformin/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Signal Transduction/drug effects , Stress, Physiological/drug effects
19.
J Exp Clin Cancer Res ; 39(1): 210, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33028357

ABSTRACT

Inflammation response of epithelial mucosa to chemo- radiotherapy cytotoxic effects leads to mucositis, a painful side effect of antineoplastic treatments. About 40% of the patients treated with chemotherapy develop mucositis; this percentage rises to about 90% for head and neck cancer patients (HNC) treated with both chemo- and radiotherapy. 19% of the latter will be hospitalized and will experience a delay in antineoplastic treatment for high-grade mucositis management, resulting in a reduction of the quality of life, a worse prognosis and an increase in patient management costs. Currently, several interventions and prevention guidelines are available, but their effectiveness is uncertain. This review comprehensively describes mucositis, debating the impact of standard chemo-radiotherapy and targeted therapy on mucositis development and pointing out the limits and the benefits of current mucositis treatment strategies and assessment guidelines. Moreover, the review critically examines the feasibility of the existing biomarkers to predict patient risk of developing oral mucositis and their role in early diagnosis. Despite the expression levels of some proteins involved in the inflammation response, such as TNF-α or IL-1ß, partially correlate with mucositis process, their presence does not exclude others mucositis-independent inflammation events. This strongly suggests the need to discover biomarkers that specifically feature mucositis process development. Non-coding RNAs might hold this potential.


Subject(s)
Chemoradiotherapy/adverse effects , Neoplasms/therapy , Quality of Life , Stomatitis/etiology , Humans , Neoplasms/pathology , Stomatitis/pathology
20.
J Exp Clin Cancer Res ; 39(1): 200, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32967703

ABSTRACT

BACKGROUND: SARS-coronavirus-2 enters host cells through binding of the Spike protein to ACE2 receptor and subsequent S priming by the TMPRSS2 protease. We aim to assess differences in both ACE2 and TMPRSS2 expression in normal tissues from oral cavity, pharynx, larynx and lung tissues as well as neoplastic tissues from the same areas. METHODS: The study has been conducted using the TCGA and the Regina Elena Institute databases and validated by experimental model in HNSCC cells. We also included data from one COVID19 patient who went under surgery for HNSCC. RESULTS: TMPRSS2 expression in HNSCC was significantly reduced compared to the normal tissues. It was more evident in women than in men, in TP53 mutated versus wild TP53 tumors, in HPV negative patients compared to HPV positive counterparts. Functionally, we modeled the multivariate effect of TP53, HPV, and other inherent variables on TMPRSS2. All variables had a statistically significant independent effect on TMPRSS2. In particular, in tumor tissues, HPV negative, TP53 mutated status and elevated TP53-dependent Myc-target genes were associated with low TMPRSS2 expression. The further analysis of both TCGA and our institutional HNSCC datasets identified a signature anti-correlated to TMPRSS2. As proof-of-principle we also validated the anti-correlation between microRNAs and TMPRSS2 expression in a SARS-CoV-2 positive HNSCC patient tissues Finally, we did not find TMPRSS2 promoter methylation. CONCLUSIONS: Collectively, these findings suggest that tumoral tissues, herein exemplified by HNSCC and lung cancers might be more resistant to SARS-CoV-2 infection due to reduced expression of TMPRSS2. These observations may help to better assess the frailty of SARS-CoV-2 positive cancer patients.


Subject(s)
Betacoronavirus/isolation & purification , Coronavirus Infections/complications , Head and Neck Neoplasms/pathology , Papillomaviridae/isolation & purification , Papillomavirus Infections/complications , Pneumonia, Viral/complications , Serine Endopeptidases/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , COVID-19 , Case-Control Studies , Coronavirus Infections/virology , Female , Follow-Up Studies , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/virology , Humans , Male , Pandemics , Papillomavirus Infections/virology , Pneumonia, Viral/virology , Prognosis , SARS-CoV-2 , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/virology , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...