Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(3): 108991, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384852

ABSTRACT

Gastrointestinal immune cells, particularly muscularis macrophages (MM) interact with the enteric nervous system and influence gastrointestinal motility. Here we determine the human gastric muscle immunome and its changes in patients with idiopathic gastroparesis (IG). Single cell sequencing was performed on 26,000 CD45+ cells obtained from the gastric tissue of 20 subjects. We demonstrate 11 immune cell clusters with T cells being most abundant followed by myeloid cells. The proportions of cells belonging to the 11 clusters were similar between IG and controls. However, 9/11 clusters showed 578-11,429 differentially expressed genes. In IG, MM had decreased expression of tissue-protective and microglial genes and increased the expression of monocyte trafficking and stromal activating genes. Furthermore, in IG, IL12 mediated JAK-STAT signaling involved in the activation of tissue-resident macrophages and Eph-ephrin signaling involved in monocyte chemotaxis were upregulated. Patients with IG had a greater abundance of monocyte-like cells. These data further link immune dysregulation to the pathophysiology of gastroparesis.

2.
United European Gastroenterol J ; 11(8): 784-796, 2023 10.
Article in English | MEDLINE | ID: mdl-37688361

ABSTRACT

BACKGROUND: Gastroparesis (GP) is characterized by delayed gastric emptying in the absence of mechanical obstruction. OBJECTIVE: Genetic predisposition may play a role; however, investigation at the genome-wide level has not been performed. METHODS: We carried out a genome-wide association study (GWAS) meta-analysis on (i) 478 GP patients from the National Institute of Diabetes and Digestive and Kidney Diseases Gastroparesis Clinical Research Consortium (GpCRC) compared to 9931 population-based controls from the University of Michigan Health and Retirement Study; and (ii) 402 GP cases compared to 48,340 non-gastroparesis controls from the Michigan Genomics Initiative. Associations for 5,811,784 high-quality SNPs were tested on a total of 880 GP patients and 58,271 controls, using logistic mixed models adjusted for age, sex, and principal components. Gene mapping was obtained based on genomic position and expression quantitative trait loci, and a gene-set network enrichment analysis was performed. Genetic associations with clinical data were tested in GpCRC patients. Protein expression of selected candidate genes was determined in full thickness gastric biopsies from GpCRC patients and controls. RESULTS: While no SNP associations were detected at strict significance (p ≤ 5 × 10-8 ), nine independent genomic loci were associated at suggestive significance (p ≤ 1 × 10-5 ), with the strongest signal (rs9273363, odds ratio = 1.4, p = 1 × 10-7 ) mapped to the human leukocyte antigen region. Computational annotation of suggestive risk loci identified 14 protein-coding candidate genes. Gene-set network enrichment analysis revealed pathways potentially involved in immune and motor dysregulation (pFDR ≤ 0.05). The GP risk allele rs6984536A (Peroxidasin-Like; PXDNL) was associated with increased abdominal pain severity scores (Beta = 0.13, p = 0.03). Gastric muscularis expression of PXDNL also positively correlated with abdominal pain in GP patients (r = 0.8, p = 0.02). Dickkopf WNT Signaling Pathway Inhibitor 1 showed decreased expression in diabetic GP patients (p = 0.005 vs. controls). CONCLUSION: We report preliminary GWAS findings for GP, which highlight candidate genes and pathways related to immune and sensory-motor dysregulation. Larger studies are needed to validate and expand these findings in independent datasets.


Subject(s)
Gastroparesis , Genome-Wide Association Study , Humans , Gastroparesis/genetics , Genetic Predisposition to Disease , Abdominal Pain
SELECTION OF CITATIONS
SEARCH DETAIL
...