Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 109(20): 7859-64, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22550175

ABSTRACT

The Sonic Hedgehog (Shh) pathway drives a subset of medulloblastomas, a malignant neuroectodermal brain cancer, and other cancers. Small-molecule Shh pathway inhibitors have induced tumor regression in mice and patients with medulloblastoma; however, drug resistance rapidly emerges, in some cases via de novo mutation of the drug target. Here we assess the response and resistance mechanisms to the natural product derivative saridegib in an aggressive Shh-driven mouse medulloblastoma model. In this model, saridegib treatment induced tumor reduction and significantly prolonged survival. Furthermore, the effect of saridegib on tumor-initiating capacity was demonstrated by reduced tumor incidence, slower growth, and spontaneous tumor regression that occurred in allografts generated from previously treated autochthonous medulloblastomas compared with those from untreated donors. Saridegib, a known P-glycoprotein (Pgp) substrate, induced Pgp activity in treated tumors, which likely contributed to emergence of drug resistance. Unlike other Smoothened (Smo) inhibitors, the drug resistance was neither mutation-dependent nor Gli2 amplification-dependent, and saridegib was found to be active in cells with the D473H point mutation that rendered them resistant to another Smo inhibitor, GDC-0449. The fivefold increase in lifespan in mice treated with saridegib as a single agent compares favorably with both targeted and cytotoxic therapies. The absence of genetic mutations that confer resistance distinguishes saridegib from other Smo inhibitors.


Subject(s)
Medulloblastoma/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Signal Transduction/drug effects , Veratrum Alkaloids/pharmacology , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Base Sequence , Blotting, Western , Comparative Genomic Hybridization , DNA Primers/genetics , Drug Resistance, Neoplasm , Flow Cytometry , Gene Expression Profiling , Immunohistochemistry , Kruppel-Like Transcription Factors/genetics , Magnetic Resonance Imaging , Medulloblastoma/pathology , Mice , Molecular Sequence Data , Pilot Projects , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Smoothened Receptor , Survival Analysis , Veratrum Alkaloids/therapeutic use , Zinc Finger Protein Gli2
2.
Cancer Res ; 69(15): 6200-7, 2009 Aug 01.
Article in English | MEDLINE | ID: mdl-19638572

ABSTRACT

Nanoparticle-based platforms have drawn considerable attention for their potential effect on oncology and other biomedical fields. However, their in vivo application is challenged by insufficient accumulation and retention within tumors due to limited specificity to the target, and an inability to traverse biological barriers. Here, we present a nanoprobe that shows an ability to cross the blood-brain barrier and specifically target brain tumors in a genetically engineered mouse model, as established through in vivo magnetic resonance and biophotonic imaging, and histologic and biodistribution analyses. The nanoprobe is comprised of an iron oxide nanoparticle coated with biocompatible polyethylene glycol-grafted chitosan copolymer, to which a tumor-targeting agent, chlorotoxin, and a near-IR fluorophore are conjugated. The nanoprobe shows an innocuous toxicity profile and sustained retention in tumors. With the versatile affinity of the targeting ligand and the flexible conjugation chemistry for alternative diagnostic and therapeutic agents, this nanoparticle platform can be potentially used for the diagnosis and treatment of a variety of tumor types.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Magnetic Resonance Imaging/methods , Nanoparticles , Animals , Carbocyanines/chemistry , Carbocyanines/pharmacokinetics , Chitosan/analogs & derivatives , Chitosan/pharmacokinetics , Ferric Compounds/chemistry , Ferric Compounds/pharmacokinetics , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyethylene Glycols/pharmacokinetics , Scorpion Venoms/chemistry , Scorpion Venoms/pharmacokinetics , Tissue Distribution
3.
Cancer Res ; 68(6): 1768-76, 2008 Mar 15.
Article in English | MEDLINE | ID: mdl-18339857

ABSTRACT

Toward the goal of generating a mouse medulloblastoma model with increased tumor incidence, we developed a homozygous version of our ND2:SmoA1 model. Medulloblastomas form in 94% of homozygous Smo/Smo mice by 2 months of age. Tumor formation is, thus, predictable by age, before the symptomatic appearance of larger lesions. This high incidence and early onset of tumors is ideal for preclinical studies because mice can be enrolled before symptom onset and with a greater latency period before late-stage disease. Smo/Smo tumors also display leptomeningeal dissemination of neoplastic cells to the brain and spine, which occurs in many human cases. Despite an extended proliferation of granule neuron precursors (GNP) in the postnatal external granular layer (EGL), the internal granular layer formed normally in Smo/Smo mice and tumor formation occurred only in localized foci on the superficial surface of the molecular layer. Thus, tumor formation is not simply the result of over proliferation of GNPs within the EGL. Moreover, Smo/Smo medulloblastomas were transplantable and serially passaged in vivo, demonstrating the aggressiveness of tumor cells and their transformation beyond a hyperplastic state. The Smo/Smo model is the first mouse medulloblastoma model to show leptomeningeal spread. The adherence to human pathology, high incidence, and early onset of tumors thus make Smo/Smo mice an efficient model for preclinical studies.


Subject(s)
Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/pathology , Hedgehog Proteins/genetics , Medulloblastoma/genetics , Medulloblastoma/pathology , Meningeal Neoplasms/pathology , Receptors, G-Protein-Coupled/genetics , Animals , Disease Models, Animal , Meningeal Neoplasms/genetics , Mice , Mice, Inbred C57BL , Mice, Nude , Mice, Transgenic , Smoothened Receptor , Transgenes
4.
J Neurooncol ; 87(2): 133-41, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18060600

ABSTRACT

PURPOSE: Current medulloblastoma therapy, surgery, radiation, and chemotherapy, is unacceptably toxic. However, 13-cis retinoic acid (RA) and SAHA, a histone deacetylase inhibitor, have each been shown to induce apoptosis in medulloblastoma cultures and mouse models. Both drugs cross the blood brain barrier, have been given safely to children, and achieve brain concentrations that are at or near therapeutic levels. Retinoic acid acts by transcriptionally activating bone morphogenetic protein-2 (BMP-2) and SAHA facilitates transcriptional activity through chromatin accessibility. We tested the hypothesis that these drugs additively induce BMP-2 transcription and apoptosis. EXPERIMENTAL DESIGN: RA + SAHA induction of BMP-2 transcription and apoptosis in medulloblastoma cultures was evaluated. Subsequently the response of mouse medulloblastomas to these two agents in the presence and absence of cisplatin was evaluated. RESULTS: BMP-2 transcription multiplied 3-fold with addition of RA to culture, and 7-fold with both agents. The IC50 of SAHA was reduced by 40% when low dose RA was added. Interestingly, a p38 MAP kinase inhibitor that partially blocks RA-induced apoptosis did not inhibit the activity of RA + SAHA. Flank D283 tumors in athymic mice had slower growth in the RA + SAHA arm than single drug or control arms. Intracranial tumors in ND2:SmoA1 mice treated with RA + SAHA + cisplatin showed a 4-fold increase in apoptosis over controls, and a 2-fold increase over animals receiving only SAHA or RA + SAHA. CONCLUSIONS: RA + SAHA additively induce BMP-2 transcription and medulloblastoma apoptosis. The combination may act through a p38 MAPK independent mechanism. Efficacy increased with cisplatin, which has implications for clinical trial design.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cerebellar Neoplasms/drug therapy , Hydroxamic Acids/administration & dosage , Isotretinoin/administration & dosage , Medulloblastoma/drug therapy , Animals , Apoptosis/drug effects , Bone Morphogenetic Protein 2 , Bone Morphogenetic Proteins/drug effects , Cell Line, Tumor , Cisplatin/administration & dosage , Mice , Mice, Transgenic , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic/drug effects , Transforming Growth Factor beta/drug effects , Vorinostat
5.
Nat Rev Genet ; 6(8): 643-8, 2005 08.
Article in English | MEDLINE | ID: mdl-16012527

ABSTRACT

Accurate and comprehensive sequence coverage for large genomes has been restricted to only a few species of specific interest. Lower sequence coverage (survey sequencing) of related species can yield a wealth of information about gene content and putative regulatory elements. But survey sequences lack long-range continuity and provide only a fragmented view of a genome. Here we show the usefulness of combining survey sequencing with dense radiation-hybrid (RH) maps for extracting maximum comparative genome information from model organisms. Based on results from the canine system, we propose that from now on all low-pass sequencing projects should be accompanied by a dense, gene-based RH map-construction effort to extract maximum information from the genome with a marginal extra cost.


Subject(s)
Radiation Hybrid Mapping , Sequence Analysis, DNA , Animals , Dogs , Humans , Phylogeny
6.
Genome Res ; 14(12): 2388-96, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15545498

ABSTRACT

The 156 breeds of registered dogs in the United States offer a unique opportunity to map genes important in disease susceptibility, morphology, and behavior. Linkage disequilibrium (LD) is of current interest for its application in whole genome association mapping, since the extent of LD determines the feasibility of such studies. We have measured LD at five genomic intervals, each 5 Mb in length and composed of five clusters of sequence variants spaced 800 kb-1.6 Mb apart. These intervals are located on canine chromosomes 1, 2, 3, 34, and 37, and none is under obvious selective pressure. Approximately 20 unrelated dogs were assayed from each of five breeds: Akita, Bernese Mountain Dog, Golden Retriever, Labrador Retriever, and Pekingese. At each genomic interval, SNPs and indels were discovered and typed by resequencing. Strikingly, LD in canines is much more extensive than in humans: D' falls to 0.5 at 400-700 kb in Golden Retriever and Labrador Retriever, 2.4 Mb in Akita, and 3-3.2 Mb in Bernese Mountain Dog and Pekingese. LD in dog breeds is up to 100x more extensive than in humans, suggesting that a correspondingly smaller number of markers will be required for association mapping studies in dogs compared to humans. We also report low haplotype diversity within regions of high LD, with 80% of chromosomes in a breed carrying two to four haplotypes, as well as a high degree of haplotype sharing among breeds.


Subject(s)
Dogs/genetics , Genetic Variation , Linkage Disequilibrium , Animals , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA , Species Specificity , Synteny/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...