Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 117(1): 62, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36445563

ABSTRACT

Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (ß3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of ß3AR overexpression on AS-induced HF. Selective ß3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human ß3AR in the heart (c-hß3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human ß3AR before AS induction. Moreover, AAV9-hß3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated ß3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hß3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that ß3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.


Subject(s)
Aortic Valve Stenosis , Heart Failure , Humans , Mice , Animals , Receptors, Adrenergic, beta-3 , Mitochondrial Dynamics , Hypertrophy, Left Ventricular , Myocytes, Cardiac , Mice, Transgenic , Metalloendopeptidases
2.
Cell ; 183(1): 94-109.e23, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937105

ABSTRACT

Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.


Subject(s)
Macrophages/metabolism , Mitochondria/metabolism , Myocytes, Cardiac/metabolism , Aged , Animals , Apoptosis , Autophagy , Female , Heart/physiology , Homeostasis , Humans , Macrophages/physiology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitochondria/physiology , Myocardial Infarction/metabolism , Myocardium/metabolism , Myocytes, Cardiac/physiology , Phagocytosis/physiology , Reactive Oxygen Species/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , c-Mer Tyrosine Kinase/metabolism
3.
Nat Commun ; 8: 14780, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28416795

ABSTRACT

The ß1-adrenergic-receptor (ADRB1) antagonist metoprolol reduces infarct size in acute myocardial infarction (AMI) patients. The prevailing view has been that metoprolol acts mainly on cardiomyocytes. Here, we demonstrate that metoprolol reduces reperfusion injury by targeting the haematopoietic compartment. Metoprolol inhibits neutrophil migration in an ADRB1-dependent manner. Metoprolol acts during early phases of neutrophil recruitment by impairing structural and functional rearrangements needed for productive engagement of circulating platelets, resulting in erratic intravascular dynamics and blunted inflammation. Depletion of neutrophils, ablation of Adrb1 in haematopoietic cells, or blockade of PSGL-1, the receptor involved in neutrophil-platelet interactions, fully abrogated metoprolol's infarct-limiting effects. The association between neutrophil count and microvascular obstruction is abolished in metoprolol-treated AMI patients. Metoprolol inhibits neutrophil-platelet interactions in AMI patients by targeting neutrophils. Identification of the relevant role of ADRB1 in haematopoietic cells during acute injury and the protective role upon its modulation offers potential for developing new therapeutic strategies.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Adrenergic beta-1 Receptor Antagonists/therapeutic use , Metoprolol/pharmacology , Metoprolol/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Neutrophils/drug effects , Animals , Cell Movement/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Metoprolol/administration & dosage , Mice , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/pathology , Neutrophils/cytology , Platelet Aggregation/drug effects , RNA, Messenger/genetics , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...