Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biology (Basel) ; 12(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37106816

ABSTRACT

Aqueous extracts from Posidonia oceanica's green and brown (beached) leaves and rhizomes were prepared, submitted to phenolic compound and proteomic analysis, and examined for their potential cytotoxic effect on HepG2 liver cancer cells in culture. The chosen endpoints related to survival and death were cell viability and locomotory behavior, cell-cycle analysis, apoptosis and autophagy, mitochondrial membrane polarization, and cell redox state. Here, we show that 24 h exposure to both green-leaf- and rhizome-derived extracts decreased tumor cell number in a dose-response manner, with a mean half maximal inhibitory concentration (IC50) estimated at 83 and 11.5 µg of dry extract/mL, respectively. Exposure to the IC50 of the extracts appeared to inhibit cell motility and long-term cell replicating capacity, with a more pronounced effect exerted by the rhizome-derived preparation. The underlying death-promoting mechanisms identified involved the down-regulation of autophagy, the onset of apoptosis, the decrease in the generation of reactive oxygen species, and the dissipation of mitochondrial transmembrane potential, although, at the molecular level, the two extracts appeared to elicit partially differentiating effects, conceivably due to their diverse composition. In conclusion, P. oceanica extracts merit further investigation to develop novel promising prevention and/or treatment agents, as well as beneficial supplements for the formulation of functional foods and food-packaging material with antioxidant and anticancer properties.

2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982723

ABSTRACT

The demand for new molecules to counter bacterial resistance to antibiotics and tumor cell resistance is increasingly pressing. The Mediterranean seagrass Posidonia oceanica is considered a promising source of new bioactive molecules. Polypeptide-enriched fractions of rhizomes and green leaves of the seagrass were tested against Gram-positive (e.g., Staphylococcus aureus, Enterococcus faecalis) and Gram-negative bacteria (e.g., Pseudomonas aeruginosa, Escherichia coli), as well as towards the yeast Candida albicans. The aforementioned extracts showed indicative MIC values, ranging from 1.61 µg/mL to 7.5 µg/mL, against the selected pathogens. Peptide fractions were further analyzed through a high-resolution mass spectrometry and database search, which identified nine novel peptides. Some discovered peptides and their derivatives were chemically synthesized and tested in vitro. The assays identified two synthetic peptides, derived from green leaves and rhizomes of P. oceanica, which revealed interesting antibiofilm activity towards S. aureus, E. coli, and P. aeruginosa (BIC50 equal to 17.7 µg/mL and 70.7 µg/mL). In addition, the natural and derivative peptides were also tested for potential cytotoxic and apoptosis-promoting effects on HepG2 cells, derived from human hepatocellular carcinomas. One natural and two synthetic peptides were proven to be effective against the "in vitro" liver cancer cell model. These novel peptides could be considered a good chemical platform for developing potential therapeutics.


Subject(s)
Alismatales , Neoplasms , Humans , Staphylococcus aureus , Escherichia coli , Peptides/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa , Alismatales/chemistry , Microbial Sensitivity Tests
3.
Antibiotics (Basel) ; 11(12)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36551449

ABSTRACT

The defense system of freshwater crayfish Procambarus clarkii as a diversified source of bioactive molecules with antimicrobial properties was studied. Antimicrobial activity of two polypeptide-enriched extracts obtained from hemocytes and hemolymph of P. clarkii were assessed against Gram positive (Staphylococcus aureus, Enterococcus faecalis) and Gram negative (Pseudomonas aeruginosa, Escherichia coli) bacteria and toward the yeast Candida albicans. The two peptide fractions showed interesting MIC values (ranging from 11 to 700 µg/mL) against all tested pathogens. Polypeptide-enriched extracts were further investigated using a high-resolution mass spectrometry and database search and 14 novel peptides were identified. Some peptides and their derivatives were chemically synthesized and tested in vitro against the bacterial and yeast pathogens. The analysis identified a synthetic derivative peptide, which showed an interesting antifungal (MIC and MFC equal to 31.2 µg/mL and 62.5 µg/mL, respectively) and antibiofilm (BIC50 equal to 23.2 µg/mL) activities against Candida albicans and a low toxicity in human cells.

4.
Dev Comp Immunol ; 126: 104258, 2022 01.
Article in English | MEDLINE | ID: mdl-34530039

ABSTRACT

The much-publicised increased resistance of pathogenic bacteria to conventional antibiotics has focused research effort on the characterization of new antimicrobial drugs. In this context, antimicrobial peptides (AMPs) extracted from animals are considered a promising alternative to conventional antibiotics. In recent years, freshwater crayfish species have emerged as an important source of bioactive compounds. In fact, these invertebrates rely on an innate immune system based on cellular responses and on the production of important effectors in the haemolymph, such as AMPs, which are produced and stored in granules in haemocytes and released after stimulation. These effectors are active against both Gram-positive and Gram-negative bacteria. In this review, we summarise the recent progress on AMPs isolated from the several species of freshwater crayfish and their prospects for future pharmaceutical applications to combat infectious agents.


Subject(s)
Anti-Bacterial Agents , Antimicrobial Cationic Peptides , Animals , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Peptides , Astacoidea , Fresh Water , Gram-Negative Bacteria , Gram-Positive Bacteria
5.
Dev Comp Immunol ; 108: 103669, 2020 07.
Article in English | MEDLINE | ID: mdl-32192994

ABSTRACT

Among the diseases that afflict the human population, cancer is one for which many drug treatments are not yet known or effective. Moreover, the pharmacological treatments used often create serious side effects in sick patients and for this reason, it is essential to find effective and less harmful treatments. To date, marine biodiversity is a real source of metabolites with antitumoral activity and among invertebrates' ascidians have been the main source to obtain them. Mediterranean area is the richest in biodiversity and contains several ascidian species used in drugs development during the years. However, many more Mediterranean ascidian species have not been studied and could be a source of useful bioactive compounds. This review aims to summarize the scientific studies that analyzed the antitumor compounds obtained from different Mediterranean ascidians species, encouraging them to search further compounds in other new species to improve pharmacological treatments and human population life.


Subject(s)
Antineoplastic Agents/therapeutic use , Biological Products/therapeutic use , Neoplasms/drug therapy , Urochordata/immunology , Animals , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Biological Products/isolation & purification , Biological Products/pharmacology , Depsipeptides/isolation & purification , Depsipeptides/pharmacology , Depsipeptides/therapeutic use , Humans , Mediterranean Sea , Neoplasms/immunology , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Trabectedin/isolation & purification , Trabectedin/pharmacology , Trabectedin/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...