Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Biol Chem ; 299(5): 104654, 2023 05.
Article in English | MEDLINE | ID: mdl-36990219

ABSTRACT

Prion-like self-perpetuating conformational conversion of proteins into amyloid aggregates is associated with both transmissible neurodegenerative diseases and non-Mendelian inheritance. The cellular energy currency ATP is known to indirectly regulate the formation, dissolution, or transmission of amyloid-like aggregates by providing energy to the molecular chaperones that maintain protein homeostasis. In this work, we demonstrate that ATP molecules, independent of any chaperones, modulate the formation and dissolution of amyloids from a yeast prion domain (NM domain of Saccharomyces cerevisiae Sup35) and restricts autocatalytic amplification by controlling the amount of fragmentable and seeding-competent aggregates. ATP, at (high) physiological concentrations in the presence of Mg2+, kinetically accelerates NM aggregation. Interestingly, ATP also promotes phase separation-mediated aggregation of a human protein harboring a yeast prion-like domain. We also show that ATP disaggregates preformed NM fibrils in a dose-independent manner. Our results indicate that ATP-mediated disaggregation, unlike the disaggregation by the disaggregase Hsp104, yields no oligomers that are considered one of the critical species for amyloid transmission. Furthermore, high concentrations of ATP delimited the number of seeds by giving rise to compact ATP-bound NM fibrils that exhibited nominal fragmentation by either free ATP or Hsp104 disaggregase to generate lower molecular weight amyloids. In addition, (low) pathologically relevant ATP concentrations restricted autocatalytic amplification by forming structurally distinct amyloids that are found seeding inefficient because of their reduced ß-content. Our results provide key mechanistic underpinnings of concentration-dependent chemical chaperoning by ATP against prion-like transmissions of amyloids.


Subject(s)
Adenosine Triphosphate , Amyloid , Biocatalysis , Prions , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Adenosine Triphosphate/metabolism , Amyloid/chemistry , Amyloid/metabolism , Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Peptide Termination Factors/metabolism , Prions/chemistry , Prions/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Magnesium/metabolism , Protein Conformation
2.
PPAR Res ; 2012: 235231, 2012.
Article in English | MEDLINE | ID: mdl-22966220

ABSTRACT

PPARγ agonists can either enhance or inhibit eosinophil migration, which is a sum of directional migration (chemotaxis) and random cell movement (chemokinesis). To date, the effects of PPAR agonists on chemokinesis have not been examined. This study investigates the effects of PPARα, δ, and γ agonists on eosinophil migration and chemokinesis. Eosinophils purified from blood of atopic donors were preincubated with rosiglitazone (PPARγ agonist), GW9578 (PPARα agonist), GW501516 (PPARδ agonist), or diluent. The effects of PPAR agonists were examined on eosinophil chemokinesis, eotaxin-induced migration of eosinophils, and migration of IL-5Rα+ CD34+ cells. Expressions of CCR3, phospho-p38, phospho-ERK, and calcium release were also measured in eosinophils after rosiglitazone treatment. Low concentrations of rosiglitazone, but not GW9578 or GW501516, increased chemokinesis of eosinophils (P = 0.0038), and SDF-1α-induced migration of immature eosinophils (P = 0.0538). Rosiglitazone had an effect on eosinophil calcium flux but had no effect on expression of CCR3 or phosphorylation of p38 or ERK. In contrast, high concentrations of rosiglitazone inhibited eosinophil migration (P = 0.0042). The effect of rosiglitazone on eosinophil migration and chemokinesis appears to be through modification of calcium signaling, which alludes to a novel PPAR-mediated mechanism to modulate eosinophil function.

SELECTION OF CITATIONS
SEARCH DETAIL