Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Pac J Cancer Prev ; 24(8): 2713-2727, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37642058

ABSTRACT

OBJECTIVE: A polyherbal medicine, Habb-e-Ustukhuddus (HU), is used for its anti-inflammatory properties. However, the anticancer and chemopreventive properties of HU were not known, and Therefore, investigated in  the  present study. METHODS: Cancer cells were treated with 50-400 µg/ml HU and MTT, trypan blue, and clonogenic assays were performed. Propidium iodide (PI) staining, annexin V-FITC assay, and JC-1 staining were done for cell cycle progression, apoptosis, and mitochondrial membrane potential, respectively, using flow cytometry. Immunoblotting, cell migration and invasion assays were performed. Chemical characterization of HU was done through GC-MS and HPLC analyses. C57BL/6 mice were used to assess the in vivo toxicity of HU. RESULTS: While evaluating the anticancer activity, the methanolic extract of HU (50-400 µg/ml) strongly inhibited the growth and survival (P<0.05-0.001) of lung and breast cancer cells and increased the cell population in the sub-G1 phase of the cell cycle. HU caused apoptotic death of cancer cells (P<0.05-0.001), which was associated with the depolarization of mitochondrial membrane potential (Δψ) (P<0.001) and an increase in Bax to Bcl-2 protein ratio. Further, HU inhibited the invasion and migration of cancer cells, which was accompanied by an increase in the epithelial marker, E-cadherin, and a decrease in the mesenchymal marker, vimentin. The HU characterization by GC-MS and HPLC analyses showed the abundance of bioactive compounds including flavonoids and alkaloids. In the chemopreventive study, the oral administration of methanolic extract of the formulation HU (50 and 100 mg/kg body weight) to mice did not cause any toxicity and significantly increased the specific activities of hepatic drug metabolizing phase I and phase II enzymes, which suggested for its detoxification potential of xenobiotic compounds. CONCLUSION: Together, these results demonstrated the anticancer potential HU, without any apparent toxicity in mice, and thus HU could be further explored for its clinical utility in cancer control.


Subject(s)
Apoptosis , Neoplasms , Animals , Mice , Mice, Inbred C57BL , Cell Movement , Cell Cycle , Lung
2.
J Tradit Complement Med ; 12(3): 287-301, 2022 May.
Article in English | MEDLINE | ID: mdl-35493312

ABSTRACT

Background and aim: Metabolic syndrome (MetS) is a complex disease of physiological imbalances interrelated to abnormal metabolic conditions, such as abdominal obesity, type II diabetes, dyslipidemia and hypertension. In the present pilot study, we investigated the nutraceutical bitter melon (Momordica charantia L) -intake induced transcriptome and metabolome changes and the converging metabolic signaling networks underpinning its inhibitory effects against MetS-associated risk factors. Experimental procedure: Metabolic effects of lyophilized bitter melon juice (BMJ) extract (oral gavage 200 mg/kg/body weight-daily for 40 days) intake were evaluated in diet-induced obese C57BL/6J male mice [fed-high fat diet (HFD), 60 kcal% fat]. Changes in a) serum levels of biochemical parameters, b) gene expression in the hepatic transcriptome (microarray analysis using Affymetrix Mouse Exon 1.0 ST arrays), and c) metabolite abundance levels in lipid-phase plasma [liquid chromatography mass spectrometry (LC-MS)-based metabolomics] after BMJ intervention were assessed. Results and conclusion: BMJ-mediated changes showed a positive trend towards enhanced glucose homeostasis, vitamin D metabolism and suppression of glycerophospholipid metabolism. In the liver, nuclear peroxisome proliferator-activated receptor (PPAR) and circadian rhythm signaling, as well as bile acid biosynthesis and glycogen metabolism targets were modulated by BMJ (p < 0.05). Thus, our in-depth transcriptomics and metabolomics analysis suggests that BMJ-intake lowers susceptibility to the onset of high-fat diet associated MetS risk factors partly through modulation of PPAR signaling and its downstream targets in circadian rhythm processes to prevent excessive lipogenesis, maintain glucose homeostasis and modify immune responses signaling.

3.
PLoS One ; 12(8): e0182870, 2017.
Article in English | MEDLINE | ID: mdl-28859099

ABSTRACT

BACKGROUND: Anthracyclines are efficient and potent agents to treat broad range of cancers but cytotoxicity induced by them limits their use in therapeutics. Use of plant-derived agents help to prevent or delay the process of cancer progression and their combination increases the anti-cancer potential of mainstream compound. However, multidrug resistance is major cause of treatment failure in cancer patients. PURPOSE: In this study, combination treatments of fisetin or acacetin with doxorubicin were explored for their potential synergistic effect on non-small-cell lung carcinoma (NSCLC) cells. STUDY DESIGN: During this study, NSCLC model cell lines A549 and H1299 were used to determine the combinatorial effect of phytochemicals namly acacetin and fisetin with doxorubicin. METHODS: The effects of individual compounds and their combination on cell viability, clonogenic potential and cell cycle progression were studied. Efflux of doxorubicin was measured by spectrofluorophotometer, whereas accumulation inside the cells was analyzed by flow cytometry and confocal microscopy. Expression of MDR1 was checked by semi-quantitative PCR. RESULTS: The results showed that the cell viability of A549 and H1299 cells were significantly decreased in time- and dose-dependent manner, although A549 cells showed more sensitivity toward doxorubicin than H1299 cells. Mostly, combination of doxorubicin showed good synergy with acacetin in both the cell lines whereas, fisetin exerted synergistic effect only at 72 h of treatment in H1299 cells. Acacetin with doxorubicin caused G2/M arrest by downregulating CDK-cyclin complex in A549 cells. Acacetin-doxorubicin combination decreased the clonogenic potential of A549 and H1299 cells upto 82% and 59%, respectively, as compared to control. Acacetin also decreased efflux of doxorubicin by 59% after 30 mins of exposure to A549 cells and further increased accumulation of doxorubicin inside the cells upto 55% in 2 h. The modulatory effect of acacetin-doxorubicin combination on doxorubicin influx and efflux was mediated through downregulation of MDR1 treansporter in NSCLC cells. CONCLUSION: These findings suggested that acacetin augments the cytotoxicity of doxorubicin at lower concentrations in lung cancer cells. Their combination leads to more retention of doxorubicin in the cells by modulating drug trasporter and thus enhances its therapeutic potential.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Non-Small-Cell Lung/drug therapy , Flavones/administration & dosage , A549 Cells , ATP Binding Cassette Transporter, Subfamily B/genetics , Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/administration & dosage , Drug Resistance, Neoplasm/genetics , Flavonoids/administration & dosage , Flavonols , Gene Expression Regulation, Neoplastic/drug effects , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...