Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
1.
Adv Pharmacol Pharm Sci ; 2024: 1322310, 2024.
Article in English | MEDLINE | ID: mdl-38716223

ABSTRACT

Krom Luang Chumphon Khet Udomsak remedy (KKR) has traditionally been used as an alternative treatment, particularly for hyperglycemia; however, its therapeutic efficacy has not been scientifically validated. Thus, this study aims to investigate the potential inhibitory and antioxidant effects of α-glucosidase enzyme and characterize the chemical profile of KKR extracts using gas chromatography-mass spectrometry (GC-MS). The investigation highlights both KKR extracts as potent inhibitors of α-glucosidase, with the ethanolic extract of KKR (KKRE) displaying an IC50 value of 46.80 µg/mL and a noncompetitive mode of action. The combination of ethanolic and aqueous extracts of KKR (KKRE and KKRA, respectively) with acarbose exhibited a synergistic effect against the α-glucosidase. The KKRE extract displayed strong scavenging effects in the DPPH assay (IC50 156.3 µg/mL) and contained significant total phenolic (172.82 mg GAE/g extract) and flavonoid (77.41 mg QE/g extract) contents. The major component of KKRE is palmitic acid (15.67%). Molecular docking revealed that the major compounds interacted with key amino acid residues (ASP215, GLU277, HIS351, ASP352, and ARG442), which are crucial for inhibiting α-glucosidase. Notably, campesterin had a more significant influence on α-glucosidase than acarbose, with low binding energy. These findings underscore the significance of KKR in traditional medicine and suggest that it is promising treatment for diabetes mellitus. Further studies using animal model will provide valuable insights for advancing this research.

2.
Front Pharmacol ; 15: 1331627, 2024.
Article in English | MEDLINE | ID: mdl-38515852

ABSTRACT

Introduction: Garcinia atroviridis has been used for traditional medicines, healthy foods and tea. The chemical compositions and biological activities of fruit, stem bark and root have been widely studied. However, the phytochemical components and the biological activities in Garcinia atroviridis leaves (GAL) are limited. This research aims to study the phytochemical components and the stress resistance effects of GAL in Caenorhabditis elegans (C. elegans). Methods: To investigate the chemical components and antioxidant activities of GAL extract, the ethanol extract was characterized by liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-QTOF MS) analysis and C. elegans was used to evaluate the effects of GAL extracts on longevity and stress resistance. Results and discussion: The results revealed that the ethanol extract of GAL possesses free radical scavenging activities. Furthermore, GAL extract increased the lifespan of C. elegans by 6.02%, 15.26%, and 12.75% at concentrations of 25, 50, and 100 µg/mL, respectively. GAL extract exhibited improved stress resistance under conditions of heat and hydrogen peroxide-induced stress. The survival rates of GAL extract-treated worms were significantly higher than those of untreated worms, and GAL extract reduced reactive oxygen species (ROS) accumulation. Additionally, GAL extract treatment upregulated the expression of stress resistance-associated genes, including gst-4, sod-3, skn-1, and hsp16.2. GAL extract supplementation alleviated stress and enhanced longevity by inducing stress-related genes in C. elegans. The observed effects of GAL extracts may be attributed to the stimulation of oxidant enzymes mediated through DAF-16/FOXO and SKN-1/NRF2, as well as the enhancement of thermal defense in C. elegans. Collectively, this study provides the first evidence of the antioxidant activities of GAL and elucidates the underlying mechanisms of stress resistance.

3.
BMC Complement Med Ther ; 24(1): 129, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38521901

ABSTRACT

BACKGROUND: The potent antiplasmodial activity of 1-hydroxy-5,6,7-trimethoxyxanthone (HTX), isolated from Mammea siamensis T. Anders. flowers, has previously been demonstrated in vitro. However, its in vivo activity has not been reported. Therefore, this study aimed to investigate the antimalarial activity and acute toxicity of HTX in a mouse model and to evaluate the pharmacokinetic profile of HTX following a single intraperitoneal administration. METHODS: The in vivo antimalarial activity of HTX was evaluated using a 4-day suppressive test. Mice were intraperitoneally injected with Plasmodium berghei ANKA strain and given HTX daily for 4 days. To detect acute toxicity, mice received a single dose of HTX and were observed for 14 days. Additionally, the biochemical parameters of the liver and kidney functions as well as the histopathology of liver and kidney tissues were examined. HTX pharmacokinetics after intraperitoneal administration was also investigated in a mouse model. Liquid chromatography triple quadrupole mass spectrometry was used to quantify plasma HTX and calculate pharmacokinetic parameters with the PKSolver software. RESULTS: HTX at 10 mg/kg body weight significantly suppressed parasitemia in malaria-infected mice by 74.26%. Mice treated with 3 mg/kg HTX showed 46.88% suppression, whereas mice treated with 1 mg/kg displayed 34.56% suppression. Additionally, no symptoms of acute toxicity were observed in the HTX-treated groups. There were no significant alterations in the biochemical parameters of the liver and kidney functions and no histological changes in liver or kidney tissues. Following intraperitoneal HTX administration, the pharmacokinetic profile exhibited a maximum concentration (Cmax) of 94.02 ng/mL, time to attain Cmax (Tmax) of 0.5 h, mean resident time of 14.80 h, and elimination half-life of 13.88 h. CONCLUSIONS: HTX has in vivo antimalarial properties against P. berghei infection. Acute toxicity studies of HTX did not show behavioral changes or mortality. The median lethal dose was greater than 50 mg/kg body weight. Pharmacokinetic studies showed that HTX has a long elimination half-life; hence, shortening the duration of malaria treatment may be required to minimize toxicity.


Subject(s)
Antimalarials , Malaria , Mammea , Mice , Animals , Antimalarials/toxicity , Plant Extracts/toxicity , Malaria/drug therapy , Flowers , Body Weight
4.
Malar J ; 23(1): 10, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38183117

ABSTRACT

BACKGROUND: Endothelial cells (ECs) play a major role in malaria pathogenesis, as a point of direct contact of parasitized red blood cells to the blood vessel wall. The study of cytoskeleton structures of ECs, whose main functions are to maintain shape and provide strength to the EC membrane is important in determining the severe sequelae of Plasmodium falciparum malaria. The work investigated the cytoskeletal changes (microfilaments-actin, microtubules-tubulin and intermediate filaments-vimentin) in ECs induced by malaria sera (Plasmodium vivax, uncomplicated P. falciparum and complicated P. falciparum), in relation to the levels of pro-inflammatory cytokines. METHODS: Morphology and fluorescence intensity of EC cytoskeleton stimulated with malaria sera were evaluated using immunofluorescence technique. Levels of tumour necrosis factor (TNF) and interferon (IFN)-gamma (γ) were determined using enzyme-linked immunosorbent assay (ELISA). Control experimental groups included ECs incubated with media alone and non-malaria patient sera. Experimental groups consisted of ECs incubated with malaria sera from P. vivax, uncomplicated P. falciparum and complicated P. falciparum. Morphological scores of cytoskeletal alterations and fluorescence intensity were compared across each experiment group, and correlated with TNF and IFN-γ. RESULTS: The four morphological changes of cytoskeleton included (1) shrinkage of cytoskeleton and ECs with cortical condensation, (2) appearance of eccentric nuclei, (3) presence of "spiking pattern" of cytoskeleton and EC membrane, and (4) fragmentation and discontinuity of cytoskeleton and ECs. Significant damages were noted in actin filaments compared to tubulin and vimentin filaments in ECs stimulated with sera from complicated P. falciparum malaria. Morphological damages to cytoskeleton was positively correlated with fluorescence intensity and the levels of TNF and IFN-γ. CONCLUSIONS: ECs stimulated with sera from complicated P. falciparum malaria showed cytoskeletal alterations and increased in fluorescence intensity, which was associated with high levels of TNF and IFN-γ. Cytoskeletal changes of ECs incubated with complicated P. falciparum malaria sera can lead to EC junctional alteration and permeability changes, which is mediated through apoptotic pathway. The findings can serve as a basis to explore measures to strengthen EC cytoskeleton and alleviate severe malaria complications such as pulmonary oedema and cerebral malaria. In addition, immunofluorescence intensity of cytoskeleton could be investigated as potential prognostic indicator for malaria severity.


Subject(s)
Malaria, Cerebral , Malaria, Vivax , Humans , Vimentin , Tubulin , Endothelial Cells , Cytoskeleton , Microtubules , Tumor Necrosis Factor-alpha , Fluorescent Antibody Technique
5.
PLoS One ; 19(1): e0296756, 2024.
Article in English | MEDLINE | ID: mdl-38206944

ABSTRACT

The emergence and spread of antimalarial drug resistance have become a significant problem worldwide. The search for natural products to develop novel antimalarial drugs is challenging. Therefore, this study aimed to assess the antimalarial and toxicological effects of Chan-Ta-Lee-La (CTLL) and Pra-Sa-Chan-Dang (PSCD) formulations and their plant ingredients. The crude extracts of CTLL and PSCD formulations and their plant ingredients were evaluated for in vitro antimalarial activity using Plasmodium lactate dehydrogenase enzyme and toxicity to Vero and HepG2 cells using the tetrazolium salt method. An extract from the CTLL and PSCD formulations exhibiting the highest selectivity index value was selected for further investigation using Peter's 4-day suppressive test, curative test, prophylactic test, and acute oral toxicity in mice. The phytochemical constituents were characterized using gas chromatography-mass spectrometry (GC-MS). Results showed that ethanolic extracts of CTLL and PSCD formulations possessed high antimalarial activity (half maximal inhibitory concentration = 4.88, and 4.19 g/mL, respectively) with low cytotoxicity. Ethanolic extracts of the CTLL and PSCD formulations demonstrated a significant dose-dependent decrease in parasitemia in mice. The ethanolic CTLL extract showed the greatest suppressive effect after 4 days of suppressive (89.80%) and curative (35.94%) testing at a dose of 600 mg/kg. Moreover, ethanolic PSCD extract showed the highest suppressive effect in the prophylactic test (65.82%) at a dose of 600 mg/kg. There was no acute toxicity in mice treated with ethanolic CTLL and PSCD extracts at 2,000 mg/kg bodyweight. GC-MS analysis revealed that the most abundant compounds in the ethanolic CTLL extract were linderol, isoborneol, eudesmol, linoleic acid, and oleic acid, whereas ethyl 4-methoxycinnamate was the most commonly found compound in the ethanolic PSCD extract, followed by 3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-4H-chromen-4-one, flamenol, oleic acid amide, linoleic acid, and oleic acid. In conclusions, ethanolic CTLL and PSCD extracts exhibited high antimalarial efficacy in vitro. The ethanolic CTLL extract at a dose of 600 mg/kg exhibited the highest antimalarial activity in the 4-day suppressive and curative tests, whereas the ethanolic PSCD extract at a dose of 600 mg/kg showed the highest antimalarial activity in the prophylactic test.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/pharmacology , Antimalarials/therapeutic use , Antimalarials/chemistry , Linoleic Acid , Oleic Acid/pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Malaria/drug therapy , Complex Mixtures/pharmacology , Plasmodium berghei
7.
Article in English | MEDLINE | ID: mdl-37998269

ABSTRACT

(1) Background: An abnormal 50 g glucose challenge test (50 g GCT) during pregnancy, even without a diagnosis of gestational diabetes mellitus (GDM), may result in undesirable obstetric and neonatal outcomes. This study sought to evaluate the outcomes in pregnant women with abnormal 50 g GCT in secondary care hospitals in Thailand. (2) Methods: A total of 1129 cases of pregnant women with abnormal 50 g GCT results who delivered between January 2018 and December 2020 at Thasala, Sichon, and Thungsong hospitals were retrospectively reviewed and divided into three groups: abnormal 50 g GCT and normal 100 g oral OGTT (Group 1; n = 397 cases), abnormal 50 g GCT and one abnormal 100 g OGTT value (Group 2; n = 452 cases), and GDM (Group 3; n = 307 cases). (3) Results: Cesarean section rates in group 3 (61.9%) were statistically higher than those in groups 1 (43.6%) and 2 (49.4%) (p < 0.001). In addition, the highest rate of birth asphyxia was found in group 2 (5.9%), which was significantly higher than that in Groups 1 (1.8%) and 3 (3.3%) (p = 0.007). (4) Conclusions: Pregnant women with abnormal 50 g GCTs without a diagnosis of GDM had undesirable maternal and neonatal outcomes, as well as those who had GDM, suggesting that healthcare providers should closely monitor them throughout pregnancy and the postpartum period.


Subject(s)
Diabetes, Gestational , Pregnant Women , Infant, Newborn , Pregnancy , Female , Humans , Retrospective Studies , Cesarean Section , Thailand/epidemiology , Glucose Tolerance Test , Diabetes, Gestational/epidemiology , Diabetes, Gestational/diagnosis , Glucose , Blood Glucose , Pregnancy Outcome/epidemiology
8.
J Orthop Surg Res ; 18(1): 778, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845656

ABSTRACT

BACKGROUND: Osteoporosis is a prevalent comorbidity in patients with COPD that is usually underrecognized and hence, undertreated. Compared to the gold standard dual-energy X-ray absorptiometry (DXA), calcaneus quantitative ultrasound (QUS) is less expensive, more portable, and more accessible, especially in less developed countries. The aim of this study was to investigate the ability of calcaneus QUS to screen and prescreen for osteoporosis in patients with COPD. METHODS: This cross-sectional study enrolled 67 males older than 50 years with clinically stable COPD. DXA scans of the lumbar spine (L2-4) and femoral neck were performed. QUS of the right calcaneus (AOS-100) was used to assess the broadband ultrasound attenuation (BUA), speed of sound (SOS), osteo sono-assessment index (OSI), and T-score. When the T-score was ≤ - 2.5, osteoporosis was diagnosed by both DXA and QUS. RESULTS: Forty-eight patients (71.6%) had DXA T-scores ≤ - 2.5 at either the lumbar spine or femoral neck. All QUS parameters (BUA, SOS, OSI, and T-score) could discriminate DXA-determined osteoporosis (the area under the curve varied from 0.64 to 0.83). The QUS T-score was significantly moderately correlated with the DXA T-score at both the femoral neck (r = 0.55) and lumbar spine (r = 0.52). The sensitivity and specificity of QUS in identifying osteoporosis were 10.4% and 94.7%, respectively. The positive and negative predictive values were 83.3% and 29.5%, respectively. When a QUS T-score of 0.09 was used as the cutoff, the sensitivity exceeded 90%, and 15% of the DXA scans were not warranted. CONCLUSIONS: The sensitivity and specificity of calcaneus QUS were not sufficient for QUS to be used as an alternative to DXA for osteoporosis screening. However, QUS may be useful for prescreening before DXA to identify COPD patients who have either a high or low likelihood of osteoporosis. Consequently, QUS reduces the need for DXA referral.


Subject(s)
Calcaneus , Osteoporosis , Pulmonary Disease, Chronic Obstructive , Male , Humans , Absorptiometry, Photon , Calcaneus/diagnostic imaging , Cross-Sectional Studies , Osteoporosis/diagnostic imaging , Ultrasonography , Sensitivity and Specificity , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnostic imaging , Bone Density
9.
Adv Pharmacol Pharm Sci ; 2023: 6624040, 2023.
Article in English | MEDLINE | ID: mdl-37745261

ABSTRACT

Drug resistance remains a significant problem that threatens antimalarial drug treatment. Hence, the challenge is to find new effective antimalarial drugs. Based on our previous study, aqueous extracts of trisamo (TSM) and jatu-phala-tiga (JPT) had good in vitro antimalarial activities, and these recipes contain multiple beneficial pharmacological effects that could be useful for malaria therapy. Therefore, this study aimed to investigate the antimalarial activity and toxicity of the aqueous extracts of TSM and JPT in mouse models. The aqueous extractions were carried out using the decoction method. Compound identification was conducted using LC-QTOF-MS analysis. The antimalarial activities of TSM and JPT at doses 200, 400, and 600 mg/kg were evaluated against Plasmodium berghei ANKA infection using a four-day suppressive test. The toxic effects of oral administration of the extracts at 2 g/kg dose were determined using an acute toxicity test. The chemical constituents of TSM contained 83 compounds, whereas JPT contained 84 compounds. All doses of the extracts exhibited a significant suppression (p < 0.05) of the parasite compared to the negative control in a four-day test. The maximum activities were observed at 600 mg/kg dose with 67.02% suppression for TSM and 79.34% for JPT, followed by 400 mg/kg dose (57.63% for TSM and 64.79% for JPT) and then 200 mg/kg dose (52.35% for TSM and 54.46% for JPT). In addition, there were no significant differences (p < 0.05) in the RBC, MCV, and MCH levels of mice receiving JPT extract compared to the uninfected control. The WBC level of mice receiving 400 and 600 mg/kg of TSM, and 200 and 400 mg/kg of JPT, was significantly (p < 0.05) lower than the infected control, and the extracts did not significantly prevent the loss of platelets. For the acute toxicity test, there were no signs of toxicity or deaths in mice, and there were no differences in the histology, weight, or enzyme biochemistry of the liver and kidney between the extract and vehicle groups. However, the platelet count in the extract-treated mice was significantly higher than that in the control group. In conclusion, this study suggests that aqueous extracts of TSM and JPT have potent antimalarial activities and could be promising as new candidates for antimalarial drug development.

10.
BMC Complement Med Ther ; 23(1): 332, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730604

ABSTRACT

BACKGROUND: Cerebral malaria is one of the most serious complications of Plasmodium infection and causes behavioral changes. However, current antimalarial drugs have shown poor outcomes. Therefore, new antimalarials with neuroprotective effects are urgently needed. This study aimed to evaluate the effects of selected extracts as monotherapy or adjunctive therapy with artesunate on antimalarial, anti-inflammatory, antioxidant, and neuroprotective properties in experimental cerebral malaria (ECM). METHODS: ECM was induced in male C57BL/6 mice by infection with Plasmodium berghei ANKA (PbA). Ethanolic extracts of Atractylodes lancea (a dose of 400 mg/kg) and Prabchompoothaweep remedy (a dose of 600 mg/kg) were evaluated as monotherapy and adjunctive therapy combined with artesunate at the onset of signs of cerebral malaria and continued for 7 consecutive days. Parasitemia, clinical scores, and body weight were recorded throughout the study. At day 13 post-infection, mouse brains were dissected and processed for the study of the inflammatory response, oxidative stress, blood-brain barrier (BBB) integrity, histopathological changes, and neurocognitive impairments. RESULTS: Ethanolic extracts of A. lancea and Prabchompoothaweep remedy alone improved cerebral malaria outcome in ECM, whereas artesunate combined with extracts of A. lancea or Prabchompoothaweep remedy significantly improved the outcome of artesunate and crude extracts alone. Using real-time PCR, PbA-infected mice that had received the combination treatment showed significantly reduced gene expression of inflammatory cytokines (TNF-α, IL-1ß, IL-6, and IL-10), chemokines (CXCL4 and CXCL10), and adhesion molecules (ICAM-1, VCAM1, and CD36). The PbA-infected mice that received the combination treatment showed a significantly decreased malondialdehyde level compared to the untreated group. Similarly, the Evans blue dye assay revealed significantly less dye extravasation in the brains of infected mice administered the combination treatment, indicating improved BBB integrity. Combination treatment improved survival and reduced pathology in the PbA-infected group. Additionally, combination treatment resulted in a significantly reduced level of cognitive impairment, which was analyzed using a novel object recognition test. CONCLUSIONS: This study demonstrated that artesunate combined with A. lancea or Prabchompoothaweep remedy extracts as adjunctive therapy reduced mortality, neuroinflammation, oxidative stress, BBB integrity protection, and neurocognitive impairment in the ECM.


Subject(s)
Antimalarials , Atractylodes , Malaria, Cerebral , Male , Animals , Mice , Mice, Inbred C57BL , Artesunate , Malaria, Cerebral/drug therapy , Antimalarials/pharmacology
11.
Article in English | MEDLINE | ID: mdl-37681843

ABSTRACT

(1) Background: Adolescence is a critical developmental phase; dietary intake and nutritional status significantly impact health outcomes. (2) Objective: This cross-sectional study investigated dietary patterns (DPs) and the association between sociodemographic factors and unhealthy DPs among adolescents in Thailand. (3) Methods: A multi-stage sampling selected 1480 participants from three public high schools in Nakhon Si Thammarat province. A food frequency questionnaire assessed dietary habits, and principal component analysis was used to identify DPs. Multinomial logistic regression examined the association between sociodemographic factors and DPs. (4) Results: The findings show that 25.9% of adolescents were underweight, 14.7% were overweight, and 5.8% were obese. Three DPs were identified: a healthy 'protein and vegetables' pattern and two unhealthy patterns: 'snacks' and 'processed foods', which explained 12.49%, 10.37%, and 7.07% of the dietary variance, respectively. Among underweight adolescents, higher snack consumption was associated with being younger (odds ratio (OR) = 3.24) and receiving a higher daily allowance (OR = 3.43). Additionally, female adolescents who engaged in frequent exercise had a 2.15 times higher intake of processed foods. Among overweight adolescents, higher snack intake was linked to being younger (OR = 8.65) and having larger families (OR = 6.37). Moreover, an increased daily allowance was associated with higher consumption of processed foods (OR = 11.47). (5) Conclusion: This study underscores the socio-demographic influence on unhealthy DPs. Insights can guide targeted interventions to foster healthier dietary habits during adolescence.


Subject(s)
Overweight , Sociodemographic Factors , Humans , Adolescent , Female , Cross-Sectional Studies , Overweight/epidemiology , Thailand/epidemiology , Thinness/epidemiology
12.
Int J Med Sci ; 20(9): 1135-1143, 2023.
Article in English | MEDLINE | ID: mdl-37575273

ABSTRACT

Herbal galactagogues have been widely used as a treatment for postpartum hypogalactia due to the potential side effects associated with pharmacological therapy. Tri-Than-Thip (Tri-TT) is a Thai herbal medicine remedy that contains three main components: Cassia fistula, Pithecellobium dulce, and Ficus benjamina. These components are believed to have properties that contribute to milk production. However, despite the traditional use of Tri-TT, there is a lack of academic evidence supporting its efficacy in enhancing milk production. Therefore, the purpose of this study was to investigate the effect of Tri-TT on milk production and determine if it has a galactagogue effect. The weight suckle weight model was used to determine total milk production in lactating rats, while histological analysis was performed to assess the alveolar diameter of the mammary gland. The findings of this study revealed a significant increase in total milk production among lactating rats treated with 500 mg/kg of Tri-TT, compared to the control group. Furthermore, both the Tri-TT and Domperidone-treated groups exhibited a larger alveolar diameter of the mammary gland in comparison to the control group. In summary, these findings provide supportive evidence for the galactagogue activity of Tri-TT. The observed enhancement in milk production may be associated with Tri-TT could potentially be attributed to its ability to widen the alveolar diameter of the mammary gland, thereby facilitating increased milk volume.


Subject(s)
Galactogogues , Milk , Female , Rats , Animals , Lactation , Galactogogues/adverse effects
13.
Antioxidants (Basel) ; 12(7)2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37507966

ABSTRACT

Tri-Yannarose is a Thai traditional herbal medicine formula composed of Areca catechu, Azadirachta indica, and Tinospora crispa. It possesses antipyretic, diuretic, expectorant, and appetite-stimulating effects. This study aimed to evaluate the antioxidant activities, cytotoxicity, and chemical constituents of an aqueous extract following a Tri-Yannarose recipe and its plant ingredients. The phytochemical analysis was performed using LC-QTOF-MS. Antioxidant activities were determined using DPPH, ABTS, TPC, TFC, FRAP, NBT, MCA, and ORAC assays. Cytotoxicity was investigated using a methyl thiazol tetrazolium (MTT) assay. In addition, the relationship between the chemical composition of Tri-Yannarose and antioxidant activities was investigated by examining the structure-activity relationship (SAR). The results of the LC-QTOF-MS analysis revealed trigonelline, succinic acid, citric acid, and other chemical constituents. The aqueous extract of the recipe showed significant scavenging effects against ABTS and DPPH radicals, with IC50 values of 1054.843 ± 151.330 and 747.210 ± 44.173 µg/mL, respectively. The TPC of the recipe was 92.685 mg of gallic acid equivalent/g of extract and the TFC was 14.160 mg of catechin equivalent/g of extract. All extracts demonstrated lower toxicity in the Vero cell line according to the MTT assay. In addition, the SAR analysis indicated that prenyl arabinosyl-(1-6)-glucoside and quinic acid were the primary antioxidant compounds in the Tri-Yannarose extract. In conclusion, this study demonstrates that Tri-Yannarose and its plant ingredients have potent antioxidant activities with low toxicity. These results support the application of the Tri-Yannarose recipe for the management of a range of disorders related to oxidative stress.

14.
BMC Complement Med Ther ; 23(1): 144, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37143036

ABSTRACT

BACKGROUND: Kheaw Hom remedy is a traditional Thai medicine used to treat fever. Some plants used in the Kheaw Hom remedy show promising in vitro antimalarial activity. This study prepared novel formulations of plants from the Kheaw Hom remedy and evaluated their antimalarial and toxicological activities. METHODS: Seven new formulations were prepared by combining at least three herbs of six selected plants from the Kheaw Hom remedy, namely Mammea siamensis Kosterm., Mesua ferrea L., Dracaena loureiroi Gagnep., Pogostemon cablin (Blanco) Benth., Kaempferia galanga L, and Eupatorium stoechadosmum Hance. In vitro antimalarial activities of each formulation's aqueous and ethanolic extracts were evaluated using the parasite lactate dehydrogenase (pLDH) assay. Cytotoxicity in Vero and HepG2 cells was assessed using the MTT assay. An extract with good antimalarial potency and selectivity index (SI) was selected for in vivo antimalarial activity using Peter's 4-day suppressive test and acute oral toxicity test in mice. In addition, bioactive compounds were identified using Gas chromatography-mass spectrometry (GC-MS) analysis. RESULTS: Among the seven new formulations, ethanolic extracts of CPF-1 (Formulation 1) showed the highest activity with an IC50 value of 1.32 ± 0.66 µg/ml, followed by ethanolic extracts of Formulation 4 and Formulation 6 with an IC50 value of 1.52 ± 0.28 µg/ml and 2.48 ± 0.34 µg/ml, respectively. The highest SI values were obtained for the ethanolic extract of CPF-1 that was selected to confirm its in vivo antimalarial activity and toxicity. The results demonstrated a significant dose-dependent reduction in parasitemia. Maximum suppressive effect of the extract (72.01%) was observed at the highest dose administered (600 mg/kg). No significant toxicity was observed after the administration of 2000 mg/kg. Using GC-MS analysis, the most abundant compound in the ethanolic extract of CPF-1 was ethyl p-methoxycinnamate (14.32%), followed by 2-propenoic acid, 3-phenyl-, ethyl ester, (E)- (2.50%), and pentadecane (1.85%). CONCLUSION: The ethanolic extract of CPF-1 showed promising in vitro and in vivo antimalarial efficacy, with no toxic effects at a dose of 2000 mg/kg, suggesting that the ethanolic extract of CPF-1 may serves as a new herbal formulation for the treatment of malaria. Additional research is required for safety and clinical pharmacology studies.


Subject(s)
Antimalarials , Malaria , Animals , Mice , Antimalarials/toxicity , Plant Extracts/chemistry , Malaria/drug therapy , Malaria/parasitology , Medicine, Traditional
15.
Inflammopharmacology ; 31(4): 2023-2035, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37129718

ABSTRACT

Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) have high mortality rates. Though corticosteroids are commonly used for the treatment of these conditions, their efficacy has not been conclusively demonstrated and their use can induce various adverse reactions. Hence, the application of corticosteroids as therapeutic modalities for ALI/ARDS is limited. Meanwhile, the aporphine alkaloid oxocrebanine isolated from Stephania pierrei tubers has demonstrated anti-inflammatory efficacy in murine/human macrophage cell lines stimulated by lipopolysaccharide (LPS). Accordingly, the primary objectives of the present study are to investigate the anti-inflammatory effects of oxocrebanine on LPS-induced murine alveolar epithelial (MLE-12) cells and its efficacy against LPS-induced murine ALI. Results show that oxocrebanine downregulates the abundance of interleukin (IL)-1beta, IL-6, and inducible nitric oxide synthase, as well as the phosphorylation of nuclear factor-kappaB (NF-κB), stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), p38, protein kinase B (Akt), and glycogen synthase kinase-3beta signalling proteins in LPS-induced MLE-12 cells. Moreover, in a murine ALI model, oxocrebanine lowers lung injury scores and lung wet/dry weight ratios while reducing inflammatory cell infiltration. It also suppresses LPS-induced tumour necrosis factor-alpha and IL-6 in the bronchoalveolar lavage fluid and plasma. Moreover, oxocrebanine downregulates NF-κB, SAPK/JNK, p38, and Akt phosphorylation in the lung tissues of LPS-treated mice. Taken together, the foregoing results show that oxocrebanine provides significant protection against LPS-induced ALI in mice primarily by suppressing various inflammatory signalling pathways in alveolar epithelial cells and lung tissues. Hence, oxocrebanine might prove effective as an anti-inflammatory agent for the treatment of lung inflammation.


Subject(s)
Acute Lung Injury , Aporphines , Respiratory Distress Syndrome , Stephania , Humans , Mice , Animals , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Lipopolysaccharides , Interleukin-6 , Stephania/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Lung/metabolism , Aporphines/adverse effects , Anti-Inflammatory Agents/therapeutic use , Respiratory Distress Syndrome/drug therapy
16.
BMC Complement Med Ther ; 23(1): 12, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36653791

ABSTRACT

BACKGROUND: Drug resistance exists in almost all antimalarial drugs currently in use, leading to an urgent need to identify new antimalarial drugs. Medicinal plant use is an alternative approach to antimalarial chemotherapy. This study aimed to explore potent medicinal plants from Prabchompoothaweep remedy for antimalarial drug development. METHODS: Forty-eight crude extracts from Prabchompoothaweep remedy and its 23 plants ingredients were investigated in vitro for antimalarial properties using Plasmodium lactate dehydrogenase (pLDH) enzyme against Plasmodium falciparum K1 strain and toxicity effects were evaluated in Vero cells. The plant with promising antimalarial activity was further investigated using gas chromatography-mass spectrometry (GC-MS) to identify phytochemicals. Antimalarial activity in mice was evaluated using a four-day suppressive test against Plasmodium berghei ANKA at dose of 200, 400, and 600 mg/kg body weight, and acute toxicity was analyzed. RESULTS: Of the 48 crude extracts, 13 (27.08%) showed high antimalarial activity against the K1 strain of P. falciparum (IC50 <  10 µg/ml) and 9 extracts (18.75%) were moderately active (IC50 = 11-50 µg/ml). Additionally, the ethanolic extract of Prabchompoothaweep remedy showed moderate antimalarial activity against the K1 strain of P. falciparum (IC50 = 14.13 µg/ml). Based on in vitro antimalarial and toxicity results, antimalarial activity of the aqueous fruit extract of Terminalia arjuna (IC50 = 4.05 µg/ml and CC50 = 219.6 µg/ml) was further studied in mice. GC-MS analysis of T. arjuna extract identified 22 compounds. The most abundant compounds were pyrogallol, gallic acid, shikimic acid, oleamide, 5-hydroxymethylfurfural, 1,1-diethoxy-ethane, quinic acid, and furfural. Analysis of the four-day suppressive test indicated that T. arjuna extract at dose of 200, 400, and 600 mg/kg body weight significantly suppressed the Plasmodium parasites by 28.33, 45.77, and 67.95%, respectively. In the acute toxicity study, T. arjuna extract was non-toxic at 2000 mg/kg body weight. CONCLUSIONS: The aqueous fruit extract of T. arjuna exerts antimalarial activity against Plasmodium parasites found in humans (P. falciparum K1) and mice (P. berghei ANKA). Acute toxicity studies showed that T. arjuna extract did not show any lethality or adverse effects up to a dose of 2000 mg/kg.


Subject(s)
Antimalarials , Malaria, Falciparum , Malaria , Plants, Medicinal , Humans , Chlorocebus aethiops , Animals , Mice , Antimalarials/toxicity , Antimalarials/chemistry , Plants, Medicinal/chemistry , Malaria/drug therapy , Malaria/parasitology , Plant Extracts/toxicity , Plant Extracts/chemistry , Vero Cells , Malaria, Falciparum/drug therapy , Body Weight
17.
Trop Med Infect Dis ; 7(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36548650

ABSTRACT

Malaria remains a life-threatening health problem and encounters with the increasing of antimalarial drug resistance. Medicinal plants play a critical role in synthesizing novel and potent antimalarial agents. This study aimed to investigate the phytochemical constituents, antiplasmodial activity, and evaluate the toxicity of crude ethanolic extracts of Myristica fragrans, Atractylodes lancea, and Prabchompoothaweep remedy in a mouse model. The phytochemical constituents were characterized by liquid chromatography-mass spectrometry (LC-MS). Antimalarial efficacy against Plasmodium berghei was assessed using 4-day suppressive tests at doses of 200, 400, and 600 mg/kg body weight. Acute toxicity was assessed at a dose of 2000 mg/kg body weight of crude extracts. The 4-day suppression test showed that all crude extracts significantly suppressed parasitemia (p < 0.05) compared to the control group. Higher parasitemia suppression was observed both in Prabchompoothaweep remedy at a dose of 600 mg/kg (60.1%), and A. lancea at a dose of 400 mg/kg (60.1%). The acute oral toxicity test indicated that the LD50 values of all extracts were greater than 2000 mg/kg and that these extracts were not toxic in the mouse model. LC-MS analysis revealed several compounds in M. fragrans, A. lancea, and Prabchompoothaweep remedy. For quantitative analysis, 1,2,6,8-tetrahydroxy-3-methylanthraquinone 2-O-b-D-glucoside, chlorogenic acid, and 3-O-(beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranosyl) ethyl 3-hydroxyoctanoate were found in A. lancea, while (7'x,8'x)-4,7'-epoxy-3,8'-bilign-7-ene-3,5'-dimethoxy-4',9,9'-triol, edulisin III, and tetra-hydrosappanone A trimethyl ether are found in M. fragrans. 6'-O-Formylmarmin was present in the Prabchompoothaweep remedy, followed by pterostilbene glycinate and amlaic acid. This study showed that the ethanolic extracts of A. lancea and Prabchompoothaweep remedy possess antimalarial activity against Plasmodium berghei. None of the extracts had toxic effects on liver and kidney function. Therefore, the ethanolic extract of A. lancea rhizome and Prabchompoothaweep remedy could be used as an alternative source of new antimalarial agents. Further studies are needed to determine the active compounds in both extracts.

18.
Trop Med Infect Dis ; 7(12)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36548672

ABSTRACT

This study evaluated the in vitro and in vivo antiplasmodial efficacy and toxicity of aqueous and ethanolic extracts from traditional recipes used in Thailand. The aqueous and ethanolic extracts of ten traditional recipes were tested for in vitro antiplasmodial activity (parasite lactate dehydrogenase assay), cytotoxicity (MTT assay), and hemolysis). Oxidant levels were measured using cell-permeable probe 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate fluorescent dye-based assays. The best candidate was chosen for testing in mouse models using 4-day suppressive and acute toxicity assays. An in vitro study showed that ethanolic extracts and three aqueous extracts exhibited antiplasmodial activity, with an IC50 in the range of 2.8-15.5 µg/mL. All extracts showed high CC50 values, except for ethanolic extracts from Benjakul, Benjalotiga, and Trikatuk in HepG2 and Benjalotiga and aqueous extract from Chan-tang-ha in a Vero cell. Based on the results of the in vitro antiplasmodial activity, an aqueous extract of Triphala was chosen for testing in mouse models. The aqueous extract of Triphala exhibited good antiplasmodial activity, was safe at an oral dose of 2 g/kg, and is a potential candidate as a new source for the development of antimalarial drugs.

19.
Bioinorg Chem Appl ; 2022: 3869337, 2022.
Article in English | MEDLINE | ID: mdl-36466999

ABSTRACT

Free heme in plasma acts as a prooxidant; thus, it is bound to hemopexin and eliminated by the liver. High iron content in the liver can support Plasmodium growth and cause oxidative liver injury. Inversely, the withholding of excessive iron can inhibit this growth and protect the liver against malaria infection. This study examined the effects of a deferiprone-resveratrol (DFP-RVT) hybrid on malaria parasites and its relevant hepatoprotective properties. Mice were infected with P. berghei, gavage DFP-RVT, deferiprone (DFP), and pyrimethamine (PYR) for 8 consecutive days. Blood and liver parameters were then evaluated. The presence of blood-stage parasites was determined using the microscopic Giemsa staining method. Subsequently, plasma liver enzymes, heme, and concentrations of thiobarbituric acid-reactive substances (TBARS) were determined. The liver tissue was examined pathologically and heme and TBARS concentrations were then quantified. The results indicate that the suppression potency against P. berghei growth occurred as follows: PYR > DFP-RVT hybrid > DFP. Importantly, DFP-RVT significantly improved RBC size, restored alanine aminotransferase and alkaline activities, and increased heme and TBARS concentrations. The compound also reduced the liver weight index, heme, and TBARS concentrations significantly when compared to mice that were untreated. Our findings support the contention that the hepatoprotective effect of DFP-RVT is associated with parasite burden, iron depletion, and lipid peroxidation in the host.

20.
Trop Med Infect Dis ; 7(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355909

ABSTRACT

The Kheaw Hom remedy is a traditional Thai medicine widely used to treat fevers. Some plant ingredients in this remedy have been investigated for their antimicrobial, antiviral, anti-inflammatory, and antioxidant activities. However, there have been no reports on the antimalarial activities of the medicinal plants in this remedy. Therefore, this study focuses on identifying potential antimalarial drug candidates from the medicinal plant ingredients of the Kheaw Hom remedy. Eighteen plants from the Kheaw Hom remedy were extracted using distilled water and ethanol. All extracts were investigated for their in vitro antimalarial activity and cytotoxicity. An extract that exhibited good in vitro antimalarial activity and low toxicity was selected for further investigation by using Peter's 4-day suppressive test and an acute oral toxicity evaluation in mice. Based on the in vitro antimalarial activity and cytotoxicity studies, the ethanolic extract of Globba malaccensis rhizomes showed promising antimalarial activity against the Plasmodium falciparum K1 strain (IC50 = 1.50 µg/mL) with less toxicity to Vero cells (CC50 of >80 µg/mL). This extract exhibited a significant dose-dependent reduction in parasitemia in P. berghei-infected mice. The maximum suppressive effect of this extract (60.53%) was observed at the highest dose administered (600 mg/kg). In a single-dose acute toxicity test, the animals treated at 2000 mg/kg died within 48 h after extract administration. In conclusion, our study indicates that the ethanolic extract of G. malaccensis rhizomes exhibited in vitro and in vivo antimalarial activities, which could serve as a promising starting point for antimalarial drug.

SELECTION OF CITATIONS
SEARCH DETAIL
...