Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 615(7953): 697-704, 2023 03.
Article in English | MEDLINE | ID: mdl-36890230

ABSTRACT

Neoantigens are peptides derived from non-synonymous mutations presented by human leukocyte antigens (HLAs), which are recognized by antitumour T cells1-14. The large HLA allele diversity and limiting clinical samples have restricted the study of the landscape of neoantigen-targeted T cell responses in patients over their treatment course. Here we applied recently developed technologies15-17 to capture neoantigen-specific T cells from blood and tumours from patients with metastatic melanoma with or without response to anti-programmed death receptor 1 (PD-1) immunotherapy. We generated personalized libraries of neoantigen-HLA capture reagents to single-cell isolate the T cells and clone their T cell receptors (neoTCRs). Multiple T cells with different neoTCR sequences (T cell clonotypes) recognized a limited number of mutations in samples from seven patients with long-lasting clinical responses. These neoTCR clonotypes were recurrently detected over time in the blood and tumour. Samples from four patients with no response to anti-PD-1 also demonstrated neoantigen-specific T cell responses in the blood and tumour to a restricted number of mutations with lower TCR polyclonality and were not recurrently detected in sequential samples. Reconstitution of the neoTCRs in donor T cells using non-viral CRISPR-Cas9 gene editing demonstrated specific recognition and cytotoxicity to patient-matched melanoma cell lines. Thus, effective anti-PD-1 immunotherapy is associated with the presence of polyclonal CD8+ T cells in the tumour and blood specific for a limited number of immunodominant mutations, which are recurrently recognized over time.


Subject(s)
Antigens, Neoplasm , CD8-Positive T-Lymphocytes , Immune Checkpoint Inhibitors , Immunotherapy , Melanoma , Humans , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/immunology , Melanoma/pathology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , HLA Antigens/immunology , Neoplasm Metastasis , Precision Medicine , Gene Editing , CRISPR-Cas Systems , Mutation
2.
Nature ; 615(7953): 687-696, 2023 03.
Article in English | MEDLINE | ID: mdl-36356599

ABSTRACT

T cell receptors (TCRs) enable T cells to specifically recognize mutations in cancer cells1-3. Here we developed a clinical-grade approach based on CRISPR-Cas9 non-viral precision genome-editing to simultaneously knockout the two endogenous TCR genes TRAC (which encodes TCRα) and TRBC (which encodes TCRß). We also inserted into the TRAC locus two chains of a neoantigen-specific TCR (neoTCR) isolated from circulating T cells of patients. The neoTCRs were isolated using a personalized library of soluble predicted neoantigen-HLA capture reagents. Sixteen patients with different refractory solid cancers received up to three distinct neoTCR transgenic cell products. Each product expressed a patient-specific neoTCR and was administered in a cell-dose-escalation, first-in-human phase I clinical trial ( NCT03970382 ). One patient had grade 1 cytokine release syndrome and one patient had grade 3 encephalitis. All participants had the expected side effects from the lymphodepleting chemotherapy. Five patients had stable disease and the other eleven had disease progression as the best response on the therapy. neoTCR transgenic T cells were detected in tumour biopsy samples after infusion at frequencies higher than the native TCRs before infusion. This study demonstrates the feasibility of isolating and cloning multiple TCRs that recognize mutational neoantigens. Moreover, simultaneous knockout of the endogenous TCR and knock-in of neoTCRs using single-step, non-viral precision genome-editing are achieved. The manufacture of neoTCR engineered T cells at clinical grade, the safety of infusing up to three gene-edited neoTCR T cell products and the ability of the transgenic T cells to traffic to the tumours of patients are also demonstrated.


Subject(s)
Cell- and Tissue-Based Therapy , Gene Editing , Neoplasms , Precision Medicine , Receptors, Antigen, T-Cell , T-Lymphocytes , Transgenes , Humans , Antigens, Neoplasm/genetics , Antigens, Neoplasm/immunology , Biopsy , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Cytokine Release Syndrome/complications , Disease Progression , Encephalitis/complications , Gene Knock-In Techniques , Gene Knockout Techniques , Genes, T-Cell Receptor alpha , Genes, T-Cell Receptor beta , Mutation , Neoplasms/complications , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Patient Safety , Precision Medicine/adverse effects , Precision Medicine/methods , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Transgenes/genetics , HLA Antigens/immunology , CRISPR-Cas Systems
3.
Mol Cancer Ther ; 21(6): 948-959, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35405741

ABSTRACT

T cells play a critical role in the control of cancer. The development of immune checkpoint blockers (ICB) aimed at enhancing antitumor T-cell responses has revolutionized cancer treatment. However, durable clinical benefit is observed in only a subset of patients, prompting research efforts to focus on strategies that target multiple inhibitory signals within the tumor microenvironment (TME) to limit tumor evasion and improve patient outcomes. Adenosine has emerged as a potent immune suppressant within the TME, and CD73 is the major enzyme responsible for its extracellular production. CD73 can be co-opted within the TME to impair T-cell-mediated antitumor immunity and promote tumor growth. To target this pathway and block the formation of adenosine, we designed a novel, selective, and potent class of small-molecule inhibitors of CD73, including AB680 (quemliclustat), which is currently being tested in patients with cancer. AB680 effectively restored T-cell proliferation, cytokine secretion, and cytotoxicity that were dampened by the formation of immunosuppressive adenosine by CD73. Furthermore, in an allogeneic mixed lymphocyte reaction where CD73-derived adenosine had a dominant suppressive effect in the presence of PD-1 blockade, AB680 restored T-cell activation and function. Finally, in a preclinical mouse model of melanoma, AB680 inhibited CD73 in the TME and increased the antitumor activity of PD-1 blockade. Collectively, these data provide a rationale for the inhibition of CD73 with AB680 in combination with ICB, such as anti-PD-1, to improve cancer patient outcomes.


Subject(s)
Melanoma , Programmed Cell Death 1 Receptor , Adenosine/metabolism , Adenosine/pharmacology , Adenosine/therapeutic use , Animals , Humans , Immune Checkpoint Inhibitors , Melanoma/drug therapy , Mice , Programmed Cell Death 1 Receptor/metabolism , Tumor Microenvironment
4.
Biochem Biophys Res Commun ; 452(3): 753-9, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25204503

ABSTRACT

Mesenchymal stem cells (MSCs) are immunosuppressive multipotent cells under investigation for potential therapeutic applications in regenerative medicine and prevention of graft-versus-host disease. Human leukocyte antigen (HLA)-G contributes to the immunomodulatory properties of MSCs. HLA-G expression in MSCs is very low and diminishes during in vitro expansion. Epigenetic regulation activates HLA-G expression in some cancer cell lines but not in MSCs. In the present study, adipose- and bone marrow-derived MSCs were exposed to the DNA demethylating agent 5-aza-2-deoxycytidine (5-aza-dC) and histone deacetylase inhibitor valproic acid (VPA) and HLA-G mRNA levels assessed using semi-quantitative reverse-transcription PCR. Exposure to 5-aza-dC resulted in HLA-G1 and -G3 upregulation in both early and late passage MSCs. VPA treatment did not induce HLA-G expression in both bone marrow and adipose derived MSCs. Our results provide the first evidence that HLA-G3 could be expressed in MSCs and that methylation-mediated repression is partly responsible for the observed low levels of HLA-G expression in MSCs. Our findings provide insight that treatment of MSCs with specific epigenetic regulatory modulators may improve their immunoregulatory capability for therapeutic applications.


Subject(s)
Epigenesis, Genetic , HLA-G Antigens/genetics , Mesenchymal Stem Cells/drug effects , RNA, Messenger/genetics , Adipose Tissue/cytology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , DNA Methylation/drug effects , Decitabine , HLA-G Antigens/metabolism , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Primary Cell Culture , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Valproic Acid/pharmacology
5.
Regen Med ; 9(1): 67-79, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24351007

ABSTRACT

AIM: To investigate the temporal HLA expression profile and immunomodulatory function of mesenchymal stem cells (MSCs) during in vitro expansion. MATERIALS & METHODS: Adult bone marrow-derived MSCs (BMSCs) and adipose-derived MSCs (AMSCs) were cultured and HLA class I and II mRNA expression were investigated during serial expansion using semiquantitative reverse-transcription PCR. The immunomodulatory properties of MSCs were monitored using peripheral blood mononuclear cell (PBMC) proliferation and cytotoxicity assays. RESULTS: Semiquantitative reverse-transcription PCR revealed that classical HLA class I molecules were highly expressed in MSCs and remained relatively stable during extended culture. Variable expression levels of HLA class II molecules were detected in both BMSCs and AMSCs across passages. AMSCs were more resistant to PBMC-mediated cytotoxicity and suppressed PBMC proliferation more than BMSCs, although the effect was diminished with increasing passage. CONCLUSION: These findings provide insight regarding the relationship between MSC passage number and MSC immunosuppressive properties and suggest that AMSCs hold advantages over BMSCs for immunomodulatory therapeutic purposes.


Subject(s)
Adipose Tissue/cytology , Adult Stem Cells/metabolism , Bone Marrow Cells/cytology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class I/metabolism , Mesenchymal Stem Cells/metabolism , Adult , Blotting, Western , Cell Culture Techniques , Electrophoresis, Polyacrylamide Gel , Gene Expression Profiling , Humans , Immunologic Factors/metabolism , Reverse Transcriptase Polymerase Chain Reaction
6.
Hum Immunol ; 74(4): 417-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23228393

ABSTRACT

Human leukocyte antigen-G (HLA-G) is a nonclassical HLA class-I molecule and plays a role in tissue specific immunoregulation. Many studies have addressed functional aspects of ß2-microglobulin (ß2m)-associated HLA-G1. ß2m-free HLA-G has been found in human placental cytotrophoblasts and pancreatic ß cells although its function remains unclear. In the present study, we investigated the function of ß2m-free HLA-G by transfecting HLA-G1 and -G3 into human ß2m deficient rat pancreatic ß cell carcinoma (BRIN-BD11) cells. RT-PCR and western blots studies confirmed high expression of HLA-G1 and -G3 in -G1 and -G3 transfectants, respectively. HLA-G1 and -G3 were detected mainly in intracellular compartments of BRIN-BD11 transductants by confocal fluorescent microscopy and flow cytometry. Functional analysis revealed that ß2m-free HLA-G promoted xenogeneic cytotoxic lysis of BRIN-BD11 cells by natural killer (NK) cells and increased production of IL-1ß, TNF-α, and IFN-γ. Stimulation of cytotoxic lysis was impaired by blocking the MAPK and DNA-PKcs pathways in NK cells. Importantly, treatment with 33mAb, a KLR2DL4 receptor agonist, induced NK-mediated cytotoxic lysis of BRIN-BD11 cells transfected with a mock vector. Our data suggest that ß2m-free HLA-G activates NK cells via engagement of KLR2DL4 receptors.


Subject(s)
HLA-G Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR2DL4/immunology , beta 2-Microglobulin/deficiency , Animals , Antibodies, Monoclonal/pharmacology , Cell Line, Tumor , Coculture Techniques , Cytotoxicity, Immunologic/drug effects , Gene Expression/drug effects , HLA-G Antigens/genetics , Humans , Interferon-beta/biosynthesis , Interferon-beta/immunology , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Killer Cells, Natural/cytology , Killer Cells, Natural/drug effects , Lymphocyte Activation/drug effects , Rats , Receptors, KIR2DL4/agonists , Receptors, KIR2DL4/genetics , Signal Transduction/drug effects , Transfection , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology , beta 2-Microglobulin/immunology
7.
Histochem Cell Biol ; 133(4): 455-65, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20229054

ABSTRACT

Although skin contains a number of stem cell repositories, their characterization has been hindered by a lack of specific markers and an unclear in vivo localization. In this study, we whole mounted single human scalp hair follicles and examined their profiles using in situ immunohistochemistry and multicolor immunofluorescence in search of markers to distinguish between stem cells residing in the interfollicular epidermis (IFE) and bulge. Our study revealed that expression of several biomarkers localized uniquely to the basal IFE (CD34 and CD117), bulge region (CD200), or both (CK15, CD49f, and CD29). In addition, we found that both basal IFE and bulge stem cells did not express CD71 or CD24 suggesting their potential utility as negative selection markers. Dermal papilla but not basal IFE or bulge stem cells expressed CD90, making it a potential positive selection marker for dermal hair follicle stem cells. The markers tested in this study may enable pursuit of cell sorting and purification strategies aimed at determining each stem cell population's unique molecular signature.


Subject(s)
Antigens, CD/metabolism , Epidermis/metabolism , Hair Follicle/metabolism , Stem Cells/metabolism , Biomarkers/metabolism , Cell Separation , Fluorescent Antibody Technique , Hair/metabolism , Hair Follicle/cytology , Humans , Immunohistochemistry , Receptors, Transferrin/metabolism , Scalp/metabolism , Skin/cytology , Skin/metabolism , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...