Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Radiol Cardiothorac Imaging ; 4(3): e210235, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35833165

ABSTRACT

Cardiac MRI has become a widely accepted standard for anatomic and functional assessment of complex Fontan physiology, because it is noninvasive and suitable for comprehensive follow-up evaluation after Fontan completion. The use of cardiac MRI in pediatric and adult patients after completion of the Fontan procedure are described, and a practical and experience-based cardiac MRI protocol for evaluating these patients is provided. The current approach and study protocol in use at the authors' institution are presented, which address technical considerations concerning sequences, planning, and optimal image acquisition in patients with Fontan circulation. Additionally, for each sequence, the information that can be obtained and guidance on how to integrate it into clinical decision-making is discussed. Keywords: Pediatrics, MRI, MRI Functional Imaging, Heart, Congenital © RSNA, 2022.

3.
J Cardiovasc Magn Reson ; 23(1): 90, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34233715

ABSTRACT

BACKGROUND: Cardiovascular magnetic resonance (CMR) derived fractal analysis of the left ventricle (LV) has been shown in adults to be a useful quantitative measure of trabeculation with high reproducibility and accuracy for the diagnosis of LV non-compaction (LVNC). The aim of this study was to investigate the utility and feasibility of fractal analysis in children. METHODS: Eighty-four subjects underwent CMR: (1) 28 patients with LVNC (as defined by the Petersen criteria with NC/C ratio [Formula: see text] 2.3); (2) 28 patients referred by clinicians for assessment of hyper-trabeculation and found not to qualify as LVNC (NC/C [Formula: see text] 1.8 and < 2.3); (3) 28 controls. The fractal scores for each group were presented as global and maximal fractal dimension as well as for 3 segments of the LV: basal, mid, and apical. Statistical comparison of the fractal scores between the 3 groups was performed. RESULTS: Global fractal dimension (FD) was higher in the LVNC group than in the hyper-trabeculated group: 1.345 (SEM 0.053) vs 1.252 (SEM 0.034), p < 0.001 and higher in hyper-trabeculated group than in controls: 1.252 (SEM 0.034) vs 1.158 (SEM 0.038), p < 0.001. The highest maximum FD was in the apical portion of the LV in the LVNC group, (1.467; SEM 0.035) whereas it was in the mid ventricle in the hyper-trabeculated (1.327; SEM 0.025) and healthy groups (1.251; SEM 0.042). Fractal analysis showed lower intra- and interobserver variability than the Petersen and Jacquier methods. CONCLUSIONS: It is technically feasible to perform fractal analysis in children using CMR and that it is quick, accurate and reproducible. Fractal scoring accurately distinguishes between LVNC, hyper-trabeculation and healthy controls as defined by the Petersen criteria.


Subject(s)
Fractals , Isolated Noncompaction of the Ventricular Myocardium , Adult , Child , Humans , Isolated Noncompaction of the Ventricular Myocardium/diagnostic imaging , Magnetic Resonance Imaging, Cine , Magnetic Resonance Spectroscopy , Predictive Value of Tests , Reproducibility of Results
5.
J Cardiovasc Magn Reson ; 23(1): 1, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33390185

ABSTRACT

BACKGROUND: Pediatric patients are becoming increasingly referred for cardiovascular magnetic resonance (CMR). Measurement of ventricular wall thickness is typically part of the assessment and can be of diagnostic importance, e.g. in arterial hypertension. However, normal values for left ventricular (LV) and right ventricular (RV) wall thickness in pediatric patients are lacking. The aim of this study was to establish pediatric centile charts for segmental LV and RV myocardial thickness in a retrospective multicenter CMR study. METHODS: CMR was performed in 161 healthy children and adolescents with an age range between 6 and 18 years from two centers in the UK and Germany as well as from a previously published CMR project of the German Competence Network for Congenital Heart Defects. LV myocardial thickness of 16 segments was measured on the short axis stack using the American Heart Association segmentation model. In addition, the thickness of the RV inferior and anterior free wall as well as biventricular mass was measured. RESULTS: The mean age (standard deviation) of the subjects was 13.6 (2.9) years, 64 (39.7%) were female. Myocardial thickness of the basal septum (basal antero- and inferoseptal wall) was 5.2 (1.1) mm, and the basal lateral wall (basal antero- and inferolateral) measured 5.1 (1.2) mm. Mid-ventricular septum (antero- and inferoseptal wall) measured 5.5 (1.2) mm, and mid-ventricular lateral wall (antero- and inferolateral wall) was 4.7 (1.2) mm. Separate centile charts for boys and girls for all myocardial segments and myocardial mass were created because gender was significantly correlated with LV myocardial thickness (p < 0.001 at basal level, p = 0.001 at midventricular level and p = 0.005 at the apex) and biventricular mass (LV, p < 0.001; RV, p < 0.001). CONCLUSION: We established CMR normal values of segmental myocardial thickness and biventricular mass in children and adolescents. Our data are of use for the detection of abnormal myocardial properties and can serve as a reference in future studies and clinical practice.


Subject(s)
Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging, Cine , Adolescent , Age Factors , Child , Female , Germany , Humans , Male , Predictive Value of Tests , Reference Values , Retrospective Studies , United Kingdom , Ventricular Function, Left , Ventricular Function, Right , Ventricular Remodeling
SELECTION OF CITATIONS
SEARCH DETAIL
...