Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Haematologica ; 107(4): 825-835, 2022 04 01.
Article in English | MEDLINE | ID: mdl-33853293

ABSTRACT

Dysregulation of apoptotic machinery is one mechanism by which acute myeloid leukemia (AML) acquires a clonal survival advantage. B-cell lymphoma protein-2 (BCL2) overexpression is a common feature in hematologic malignancies. The selective BCL2 inhibitor, venetoclax (VEN) is used in combination with azacitidine (AZA), a DNAmethyltransferase inhibitor (DNMTi), to treat patients with AML. Despite promising response rates to VEN/AZA, resistance to the agent is common. One identified mechanism of resistance is the upregulation of myeloid cell leukemia-1 protein (MCL1). Pevonedistat (PEV), a novel agent that inhibits NEDD8-activating enzyme, and AZA both upregulate NOXA (PMAIP1), a BCL2 family protein that competes with effector molecules at the BH3 binding site of MCL1. We demonstrate that PEV/AZA combination induces NOXA to a greater degree than either PEV or AZA alone, which enhances VEN-mediated apoptosis. Herein, using AML cell lines and primary AML patient samples ex vivo, including in cells with genetic alterations linked to treatment resistance, we demonstrate robust activity of the PEV/VEN/AZA triplet. These findings were corroborated in preclinical systemic engrafted models of AML. Collectively, these results provide rational for combining PEV/VEN/AZA as a novel therapeutic approach in overcoming AML resistance in current therapies.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Azacitidine/pharmacology , Azacitidine/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Cyclopentanes , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Pyrimidines , Sulfonamides
2.
Sci Rep ; 11(1): 18571, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535719

ABSTRACT

The current standard preclinical oncology models are not able to fully recapitulate therapeutic targets and clinically relevant disease biology, evidenced by the 90% attrition rate of new therapies in clinical trials. Three-dimensional (3D) culture systems have the potential to enhance the relevance of preclinical models. However, the limitations of currently available cellular assays to accurately evaluate therapeutic efficacy in these models are hindering their widespread adoption. We assessed the compatibility of the lactate dehydrogenase (LDH) assay in 3D spheroid cultures against other commercially available readout methods. We developed a standardized protocol to apply the LDH assay to ex vivo cultures, considering the impact of culture growth dynamics. We show that accounting for growth rates and background release levels of LDH are sufficient to make the LDH assay a suitable methodology for longitudinal monitoring and endpoint assessment of therapeutic efficacy in both cell line-derived xenografts (xenospheres) and patient-derived explant cultures. This method has the added value of being non-destructive and not dependent on reagent penetration or manipulation of the parent material. The establishment of reliable readout methods for complex 3D culture systems will further the utility of these tumor models in preclinical and co-clinical drug development studies.


Subject(s)
Drug Screening Assays, Antitumor/methods , L-Lactate Dehydrogenase/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Discovery/methods , Humans , Mice , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Tumor Cells, Cultured
3.
Clin Cancer Res ; 26(13): 3371-3383, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32054729

ABSTRACT

PURPOSE: Patients with acute myeloid leukemia (AML) frequently do not respond to conventional therapies. Leukemic cell survival and treatment resistance have been attributed to the overexpression of B-cell lymphoma 2 (BCL-2) and aberrant DNA hypermethylation. In a phase Ib study in elderly patients with AML, combining the BCL-2 selective inhibitor venetoclax with hypomethylating agents 5-azacitidine (5-Aza) or decitabine resulted in 67% overall response rate; however, the underlying mechanism for this activity is unknown. EXPERIMENTAL DESIGN: We studied the consequences of combining two therapeutic agents, venetoclax and 5-Aza, in AML preclinical models and primary patient samples. We measured expression changes in the integrated stress response (ISR) and the BCL-2 family by Western blot and qPCR. Subsequently, we engineered PMAIP1 (NOXA)- and BBC3 (PUMA)-deficient AML cell lines using CRISPR-Cas9 methods to understand their respective roles in driving the venetoclax/5-Aza combinatorial activity. RESULTS: In this study, we demonstrate that venetoclax and 5-Aza act synergistically to kill AML cells in vitro and display combinatorial antitumor activity in vivo. We uncover a novel nonepigenetic mechanism for 5-Aza-induced apoptosis in AML cells through transcriptional induction of the proapoptotic BH3-only protein NOXA. This induction occurred within hours of treatment and was mediated by the ISR pathway. NOXA was detected in complex with antiapoptotic proteins, suggesting that 5-Aza may be "priming" the AML cells for venetoclax-induced apoptosis. PMAIP1 knockout confirmed its major role in driving venetoclax and 5-Aza synergy. CONCLUSIONS: These data provide a novel nonepigenetic mechanism of action for 5-Aza and its combinatorial activity with venetoclax through the ISR-mediated induction of PMAIP1.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Azacitidine/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Sulfonamides/pharmacology , Animals , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , DNA Methylation , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Gene Expression Regulation, Leukemic/drug effects , Gene Knockdown Techniques , Humans , Leukemia, Myeloid, Acute , Mice , Proto-Oncogene Proteins c-bcl-2/metabolism
4.
Sci Transl Med ; 11(492)2019 05 15.
Article in English | MEDLINE | ID: mdl-31092695

ABSTRACT

Sebum plays important physiological roles in human skin. Excess sebum production contributes to the pathogenesis of acne vulgaris, and suppression of sebum production reduces acne incidence and severity. We demonstrate that sebum production in humans depends on local flux through the de novo lipogenesis (DNL) pathway within the sebocyte. About 80 to 85% of sebum palmitate (16:0) and sapienate (16:1n10) were derived from DNL, based on stable isotope labeling, much higher than the contribution of DNL to triglyceride palmitate in circulation (~20%), indicating a minor contribution by nonskin sources to sebum lipids. This dependence on local sebocyte DNL was not recapitulated in two widely used animal models of sebum production, Syrian hamsters and Göttingen minipigs. Confirming the importance of DNL for human sebum production, an acetyl-CoA carboxylase inhibitor, ACCi-1, dose-dependently suppressed DNL and blocked synthesis of fatty acids, triglycerides, and wax esters but not free sterols in human sebocytes in vitro. ACCi-1 dose-dependently suppressed facial sebum excretion by ~50% (placebo adjusted) in human individuals dosed orally for 2 weeks. Sebum triglycerides, wax esters, and free fatty acids were suppressed by ~66%, whereas non-DNL-dependent lipid species, cholesterol, and squalene were not reduced, confirming selective modulation of DNL-dependent lipids. Last, individuals with acne vulgaris exhibited increased sebum production rates relative to individuals with normal skin, with >80% of palmitate and sapienate derived from DNL. These findings highlight the importance of local sebocyte DNL for human skin sebaceous gland biology and illuminate a potentially exploitable therapeutic target for the treatment of acne vulgaris.


Subject(s)
Acetyl-CoA Carboxylase/antagonists & inhibitors , Acne Vulgaris/enzymology , Enzyme Inhibitors/pharmacology , Lipogenesis , Sebum/metabolism , Acetyl-CoA Carboxylase/metabolism , Adolescent , Adult , Animals , Cells, Cultured , Cricetinae , Enzyme Inhibitors/chemistry , Female , Humans , Lipogenesis/drug effects , Male , Malonyl Coenzyme A/metabolism , Middle Aged , Rats, Wistar , Sebaceous Glands/drug effects , Sebaceous Glands/metabolism , Sebaceous Glands/pathology , Sebum/drug effects , Swine , Swine, Miniature , Triglycerides/biosynthesis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...