Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Pulm Circ ; 14(1): e12335, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38213946

ABSTRACT

Bone morphogenetic protein receptor 2 (BMPR2) mutation is the most common gene mutation implicated in the pathogenesis of pulmonary arterial hypertension (PAH). We describe, for the first time, an excellent clinical response to tyrosine kinase inhibitor imatinib in a patient with heritable PAH from BMPR2 mutation.

2.
RSC Adv ; 11(20): 12003-12014, 2021 Mar 23.
Article in English | MEDLINE | ID: mdl-35423778

ABSTRACT

Identifying best bioactive phytochemicals from different medicinal plants using molecular docking techniques demonstrates a potential pre-clinical compound discovery against SARS-CoV-2 viral infection. The in silico screening of bioactive phytochemicals with the two druggable targets of SARS-CoV-2 by simple precision/extra precision molecular docking methods was used to compute binding affinity at its active sites. phyllaemblicin and cinnamtannin class of phytocompounds showed a better binding affinity range (-9.0 to -8.0 kcal mol-1) towards both these SARS-CoV-2 targets; the corresponding active site residues in the spike protein were predicted as: Y453, Q496, Q498, N501, Y449, Q493, G496, T500, Y505, L455, Q493, and K417; and Mpro: Q189, H164, H163, P168, H41, L167, Q192, M165, C145, Y54, M49, and Q189. Molecular dynamics simulation further established the structural and energetic stability of protein-phytocompound complexes and their interactions with their key residues supporting the molecular docking analysis. Protein-protein docking using ZDOCK and Prodigy server predicted the binding pose and affinity (-13.8 kcal mol-1) of the spike glycoprotein towards the human ACE2 enzyme and also showed significant structural variations in the ACE2 recognition site upon the binding of phyllaemblicin C compound at their binding interface. The phyllaemblicin and cinnamtannin class of phytochemicals can be potential inhibitors of both the spike and Mpro proteins of SARS-CoV-2; furthermore, its pharmacology and clinical optimization would lead towards novel COVID-19 small-molecule therapy.

3.
Biochim Biophys Acta Gen Subj ; 1865(1): 129758, 2021 01.
Article in English | MEDLINE | ID: mdl-33031906

ABSTRACT

BACKGROUND: Bacterial surface proteins act as potential adhesins or invasins. The GroEL is a signal peptide-free surface expressed protein that aids adhesion in Escherichia coli by binding to LOX-1 receptor of the host cells. Mycobacterium tuberculosis (Mtb) expresses GroEL2 protein, having high level sequence identity with E. coli GroEL. This study investigates the interaction mechanism of GroEL2 protein of Mtb with LOX-1 of macrophages using integrated computational and experimental approach. METHODS: Mtb GroEL2 protein was purified as histidine tagged protein using Ni-NTA chromatography. Confocal and scanning electron microscopies were used to study the uptake of GroEL2 coated fluorescent latex beads through the LOX-1 receptor in RAW264.7 macrophage cell line. Docking studies were performed to understand the interaction between the GroEL2 and LOX-1 proteins. Polyinosinic acid (PIA) was used as a LOX-1 inhibitor in both in silico and in vitro experiments. RESULTS: GroEL2 protein coating enhances uptake of latex beads into macrophages through LOX-1 receptor. LOX-1 inhibitor PIA decreased the uptake of GroEL2 coated latex beads. GroEL2 interacts with the key ligand binding regions of the LOX-1 receptor, such as the basic spine and the saddle hydrophobic patch. PIA molecule destabilized the LOX-1-GroEL2 docked complex. CONCLUSION: Surface associated GroEL2 protein of Mtb is a potential ligand for macrophage LOX-1 receptor. Interaction between GroEL2 and LOX-1 receptor may be utilized by Mtb to gain its intracellular access. GENERAL SIGNIFICANCE: Surface associated GroEL2 of Mtb may bind to the macrophage LOX-1 receptor, enabling the internalization of the bacteria and progression of the infection.


Subject(s)
Chaperonin 60/metabolism , Host-Pathogen Interactions , Macrophages/metabolism , Mycobacterium tuberculosis/physiology , Scavenger Receptors, Class E/metabolism , Tuberculosis/metabolism , Animals , Macrophages/microbiology , Mice , Molecular Docking Simulation , Protein Binding , RAW 264.7 Cells , Tuberculosis/microbiology
4.
Sci Rep ; 9(1): 6800, 2019 05 01.
Article in English | MEDLINE | ID: mdl-31043655

ABSTRACT

Effective therapeutic regimens for the treatment of tuberculosis (TB) are limited. They are comprised of multiple drugs that inhibit the essential cellular pathways in Mycobacterium tuberculosis (Mtb). The present study investigates an approach which enables a combination of Amoxicillin-Clavulanic acid (AMC) and a repurposed drug for its synergistic effect towards TB treatment. We identified Diosmin (DIO), by targeting the active site residues of L,D-transpeptidase (Ldt) enzymes involved in Mtb cell wall biosynthesis by using a structure-based drug design method. DIO is rapidly converted into aglycone form Diosmetin (DMT) after oral administration. Binding of DIO or DMT towards Ldt enzymes was studied using molecular docking and bioassay techniques. Combination of DIO (or DMT) and AMC exhibited higher mycobactericidal activity against Mycobacterium marinum as compared to individual drugs. Scanning electron microscopy study of M. marinum treated with AMC-DIO and AMC-DMT showed marked cellular leakage. M. marinum infected Drosophila melanogaster fly model showed an increased fly survival of ~60% upon treatment with a combination of AMC and DIO (or DMT). Finally, the enhanced in vitro antimicrobial activity of AMC-DIO was validated against Mtb H37Ra and a MDR clinical isolate. Our results demonstrate the potential for AMC and DIO (or DMT) as a synergistic combination for the treatment of TB.


Subject(s)
Amoxicillin-Potassium Clavulanate Combination/pharmacology , Antitubercular Agents/pharmacology , Diosmin/pharmacology , Drosophila melanogaster/growth & development , Drug Repositioning/methods , Mycobacterium tuberculosis/growth & development , Tuberculosis/drug therapy , Amino Acid Sequence , Animals , Antitubercular Agents/chemistry , Bacterial Proteins/metabolism , Drosophila melanogaster/drug effects , Drug Design , Drug Therapy, Combination , Male , Microbial Sensitivity Tests , Molecular Docking Simulation , Mycobacterium tuberculosis/drug effects , Sequence Homology , Tuberculosis/metabolism , Tuberculosis/microbiology
5.
Int J Biol Macromol ; 110: 598-607, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29061520

ABSTRACT

Lactobacillus species possesses surface exposed Mucin Binding Protein (MucBP) which plays a role in adhesion to gastrointestinal mucin. MucBP contains one or more mucin binding domain (MBD), the functionality of which has yet not been characterized thoroughly. Here, we have characterized a 93-amino acid MBD (MBD93) of MucBP (LAF_0673) from Lactobacillus fermentum. Multiple sequence alignment of L. fermentum MBD93 exhibited ∼60% sequence homology with MBDs from other Lactobacillus species. Further, we cloned, expressed and purified MBD93 from Escherichia coli as N-terminal histidine-tagged protein (6X His-MBD93). The purified MBD93 was able to bind to mucin and showed strong affinity towards the terminally expressed mucin glycans viz. N-acetylgalactosamine (GalNAc), N-acetylglucosamine (GlcNAc), Galactose (Gal), and Sialic acid (N-acetylneuraminic acid; Neu5Ac). In silico experiments further confirmed the interaction between homology modeled MBD93 to mucin glycans through hydrogen-bonding with its surface amino acid residues Ser57, Pro58, Ile60, Tyr63 and Ala65. We also have demonstrated that MBD93 was able to inhibit the adhesion of enteric pathogens, including E. coli, Salmonella Paratyphi A, Shigella sonnei and Proteus vulgaris to mucin. Our results suggested that L. fermentum MBD93 is a functionally sufficient unit to act as an adhesin and to protect from invading enteric pathogens.


Subject(s)
Adhesins, Bacterial , Bacterial Adhesion/drug effects , Limosilactobacillus fermentum , Mucins/metabolism , Adhesins, Bacterial/chemistry , Adhesins, Bacterial/genetics , Adhesins, Bacterial/metabolism , Adhesins, Bacterial/pharmacology , Animals , Enteropathogenic Escherichia coli/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Limosilactobacillus fermentum/chemistry , Limosilactobacillus fermentum/genetics , Limosilactobacillus fermentum/metabolism , Protein Domains , Proteus vulgaris/metabolism , Proteus vulgaris/pathogenicity , Salmonella paratyphi A/metabolism , Salmonella paratyphi A/pathogenicity , Shigella sonnei/metabolism , Shigella sonnei/pathogenicity , Swine
6.
Biochem J ; 474(16): 2691-2711, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28673961

ABSTRACT

Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso-diaminopimelic acid (mesoDAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors.


Subject(s)
Acetylmuramyl-Alanyl-Isoglutamine/chemistry , Molecular Docking Simulation , Nod1 Signaling Adaptor Protein/chemistry , Nod2 Signaling Adaptor Protein/chemistry , Acetylmuramyl-Alanyl-Isoglutamine/genetics , Acetylmuramyl-Alanyl-Isoglutamine/metabolism , HEK293 Cells , Humans , Ligands , Nod1 Signaling Adaptor Protein/genetics , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , Protein Domains
7.
Biochem J ; 473(24): 4573-4592, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27742759

ABSTRACT

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) is an intracellular pattern recognition receptor that recognizes bacterial peptidoglycan (PG) containing meso-diaminopimelic acid (mesoDAP) and activates the innate immune system. Interestingly, a few pathogenic and commensal bacteria modify their PG stem peptide by amidation of mesoDAP (mesoDAPNH2). In the present study, NOD1 stimulation assays were performed using bacterial PG containing mesoDAP (PGDAP) and mesoDAPNH2 (PGDAPNH2) to understand the differences in their biomolecular recognition mechanism. PGDAP was effectively recognized, whereas PGDAPNH2 showed reduced recognition by the NOD1 receptor. Restimulation of the NOD1 receptor, which was initially stimulated with PGDAP using PGDAPNH2, did not show any further NOD1 activation levels than with PGDAP alone. But the NOD1 receptor initially stimulated with PGDAPNH2 responded effectively to restimulation with PGDAP The biomolecular structure-recognition relationship of the ligand-sensing leucine-rich repeat (LRR) domain of human NOD1 (NOD1-LRR) with PGDAP and PGDAPNH2 was studied by different computational techniques to further understand the molecular basis of our experimental observations. The d-Glu-mesoDAP motif of GMTPDAP, which is the minimum essential motif for NOD1 activation, was found involved in specific interactions at the recognition site, but the interactions of the corresponding d-Glu-mesoDAP motif of PGDAPNH2 occur away from the recognition site of the NOD1 receptor. Hot-spot residues identified for effective PG recognition by NOD1-LRR include W820, G821, D826 and N850, which are evolutionarily conserved across different host species. These integrated results thus successfully provided the atomic level and biochemical insights on how PGs containing mesoDAPNH2 evade NOD1-LRR receptor recognition.


Subject(s)
Diaminopimelic Acid/chemistry , Diaminopimelic Acid/metabolism , Nod1 Signaling Adaptor Protein/chemistry , Nod1 Signaling Adaptor Protein/metabolism , Peptidoglycan/chemistry , Peptidoglycan/metabolism , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Molecular Sequence Data , Protein Binding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...