Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(34): 40543-40551, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34403249

ABSTRACT

Solid nanocomposite electrolytes (nano-SCEs) that exhibit higher ionic conductivity than the individual confined electrolyte were investigated for high-performance solid-state batteries. Understanding the behavior of Li-ion conduction through the pores is important to design ideal nanoporous structures for nano-SCEs, which are composed of an ionic liquid electrolyte (ILE) in a highly porous (∼90%) silica matrix. To establish the relationship between the pore structure of the silica matrix and the ionic conductivity of the solid nanocomposite, the liquid electrolyte fraction was successfully extracted from the nano-SCE to reveal the fragile porous silica matrix. A careful drying using the CO2 supercritical drying method helps in sustaining the original structure, preventing its collapse due to surface tension. The pore size distribution, Brunauer-Emmett-Teller (BET) surface area, and porosity were characterized using scanning electron microscopy, transmission electron microscopy, and N2 adsorption/desorption techniques. Our results revealed a wide size distribution of macropores and mesopores in the silica matrix. The pore size increased and the effective surface area decreased with increasing ILE/SiO2 molar ratio. The interface conductivity enhancement was found to increase with the thickness of the adsorbed (ice-like) bound-water layer on the silica surface, confirming that the strong hydrogen bonding of the adsorbed ionic liquid molecules on the bound-water layer causes the conduction promotion effect in the nano-SCE. In addition, a large number of small pores lead to a severe pore confinement effect that results in a decreased conductivity due to the increasing viscosity of the ILE filling the pores. The conductivity can be improved by realizing a nano-SCE with an optimized pore size to minimize the pore confinement effect.

2.
Sci Adv ; 6(2): eaav3400, 2020 01.
Article in English | MEDLINE | ID: mdl-31950074

ABSTRACT

The transition to solid-state Li-ion batteries will enable progress toward energy densities of 1000 W·hour/liter and beyond. Composites of a mesoporous oxide matrix filled with nonvolatile ionic liquid electrolyte fillers have been explored as a solid electrolyte option. However, the simple confinement of electrolyte solutions inside nanometer-sized pores leads to lower ion conductivity as viscosity increases. Here, we demonstrate that the Li-ion conductivity of nanocomposites consisting of a mesoporous silica monolith with an ionic liquid electrolyte filler can be several times higher than that of the pure ionic liquid electrolyte through the introduction of an interfacial ice layer. Strong adsorption and ordering of the ionic liquid molecules render them immobile and solid-like as for the interfacial ice layer itself. The dipole over the adsorbate mesophase layer results in solvation of the Li+ ions for enhanced conduction. The demonstrated principle of ion conduction enhancement can be applied to different ion systems.

3.
ACS Appl Mater Interfaces ; 8(11): 7060-9, 2016 Mar 23.
Article in English | MEDLINE | ID: mdl-26963140

ABSTRACT

Ultrathin lithium phosphorus oxynitride glass (LiPON) films with thicknesses down to 15 nm, deposited by reactive sputtering in nitrogen plasma, were found to be electronically insulating. Such ultrathin electrolyte layers could lead to high power outputs and increased battery energy densities. The effects of stoichiometry, film thickness, and substrate material on the ionic conductivity were investigated. As the amount of nitrogen in the layers increased, the activation energy of the ionic conductivity decreased from 0.63 to 0.53 eV, leading to a maximum conductivity of 1 × 10(-6) S/cm. No dependence of the ionic conductivity on the film thickness or substrate material could be established. A detailed analysis of the equivalent circuit model used to fit the impedance data is provided. Polarization measurements were performed to determine the electronic leakage in these ultrathin films. A 15-nm LiPON layer on a TiN substrate showed electronically insulating properties with electronic resistivity values around 10(15) Ω·cm. To our knowledge, this is the thinnest RF-sputtered LiPON layer shown to be electronically insulating while retaining good ionic conductivity.

4.
ACS Appl Mater Interfaces ; 7(40): 22413-20, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26436688

ABSTRACT

Ultrathin LiMn2O4 electrode layers with average crystal size of ∼15 nm were fabricated by means of radio frequency sputtering. Cycling behavior and rate performance was evaluated by galvanostatic charge and discharge measurements. The thinnest films show the highest volumetric capacity and best cycling stability, retaining the initial capacity over 70 (dis)charging cycles when manganese dissolution is prevented. The increased stability for film thicknesses below 50 nm allows cycling in both the 4 and 3 V potential regions, resulting in a high volumetric capacity of 1.2 Ah/cm3. It is shown that the thinnest films can be charged to 75% of their full capacity within 18 s (200 C), the best rate performance reported for LiMn2O4. This is explained by the short diffusion lengths inherent to thin films and the absence of phase transformation.

5.
Phys Chem Chem Phys ; 17(43): 29045-56, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26456552

ABSTRACT

RF-sputtered thin films of spinel Li(x)Mg(1-2x)Al(2+x)O4 were investigated for use as solid electrolyte. The usage of this material can enable the fabrication of a lattice matched battery stack, which is predicted to lead to superior battery performance. Spinel Li(x)Mg(1-2x)Al(2+x)O4 thin films, with stoichiometry (x) ranging between 0 and 0.25, were formed after a crystallization anneal as shown by X-ray diffraction and transmission electron microscopy. The stoichiometry of the films was evaluated by elastic recoil detection and Rutherford backscattering and found to be slightly aluminum rich. The excellent electronic insulation properties were confirmed by both current-voltage measurements as well as by copper plating tests. The electrochemical stability window of the material was probed using cyclic voltammetry. Lithium plating and stripping was observed together with the formation of a Li-Pt alloy, indicating that Li-ions passed through the film. This observation contradicted with impedance measurements at open circuit potential, which showed no apparent Li-ion conductivity of the film. Impedance spectroscopy as a function of potential showed the occurrence of Li-ion intercalation into the Li(x)Mg(1-2x)Al(2+x)O4 layers. When incorporating Li-ions in the material the ionic conductivity can be increased by 3 orders of magnitude. Therefore it is anticipated that the response of Li(x)Mg(1-2x)Al(2+x)O4 is more adequate for a buffer layer than as the solid electrolyte.

6.
Phys Chem Chem Phys ; 16(11): 5399-406, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24503944

ABSTRACT

Ionic diffusion through the novel (AlxMg1-2xLix)Al2O4 spinel electrolyte is investigated using first-principles calculations, combined with the Kinetic Monte Carlo algorithm. We observe that the ionic diffusion increases with the lithium content x. Furthermore, the structural parameters, formation enthalpies and electronic structures of (AlxMg1-2xLix)Al2O4 are calculated for various stoichiometries. The overall results indicate the (AlxMg1-2xLix)Al2O4 stoichiometries x = 0.2…0.3 as most promising. The (AlxMg1-2xLix)Al2O4 electrolyte is a potential candidate for the all-spinel solid-state battery stack, with the material epitaxially grown between well-known spinel electrodes, such as LiyMn2O4 and Li4+3yTi5O12 (y = 0…1). Due to their identical crystal structure, a good electrolyte-electrode interface is expected.

SELECTION OF CITATIONS
SEARCH DETAIL
...