Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38496418

ABSTRACT

DEAD-box RNA helicases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box helicases unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened. Using high-resolution optical tweezers and fluorescence, we reveal a highly dynamic and stochastic process of multiple Ded1p protomers assembling on and unwinding an RNA duplex. One Ded1p protomer binds to a duplex-adjacent ssRNA tail and promotes binding and subsequent unwinding of the duplex by additional Ded1p protomers in 4-6 bp steps. The data also reveal rapid duplex unwinding and rezipping linked with binding and dissociation of individual protomers and coordinated with the ATP hydrolysis cycle.

2.
MicroPubl Biol ; 20242024.
Article in English | MEDLINE | ID: mdl-38440332

ABSTRACT

The KT3 antibody is a commercially available antibody that recognizes the P granule protein PGL-3 (Takeda et al., 2008). Using immunostaining and western blotting of purified peptide fragments, we show that KT3 recognizes both PGL-3 and its paralog PGL-1 , likely through a shared epitope in the intrinsically disordered region.

3.
Cancers (Basel) ; 16(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539466

ABSTRACT

The DEAD (Asp-Glu-Ala-Asp)-box helicase 3 X-linked (DDX3X) protein participates in many aspects of mRNA metabolism and stress granule (SG) formation. DDX3X has also been associated with signal transduction and cell cycle regulation that are important in maintaining cellular homeostasis. Malfunctions of DDX3X have been implicated in multiple cancers, including brain cancer, leukemia, prostate cancer, and head and neck cancer. Recently, literature has reported SG-associated cancer drug resistance, which correlates with a negative disease prognosis. Based on the connections between DDX3X, SG formation, and cancer pathology, targeting DDX3X may be a promising direction for cancer therapeutics development. In this review, we describe the biological functions of DDX3X in terms of mRNA metabolism, signal transduction, and cell cycle regulation. Furthermore, we summarize the contributions of DDX3X in SG formation and cellular stress adaptation. Finally, we discuss the relationships of DDX3X, SG, and cancer drug resistance, and discuss the current research progress of several DDX3X inhibitors for cancer treatment.

4.
J Hered ; 115(1): 19-31, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-37935944

ABSTRACT

The application of molecular tools to population management can improve the long-term genetic viability of ex situ populations. In this study, we aimed to understand the implications of integrating empirical kinships into the genetic management of an ex situ population of the endangered waterfowl, Baer's pochard (Aythya baeri), in North America. Single nucleotide polymorphism data were generated for 141 Baer's pochard using double digest restriction site-associated DNA sequencing and empirical kinships were derived and integrated into the population management software PMx. Analyses suggested 37.7% of pairwise relationships previously assumed to be unrelated were first, second, or third-order relatives. We determined that most genetic summary statistics were impacted through the calculation of the population's mean kinship, which increased from MK¯=0.0772 to MK¯=0.2074 after empirical kinships were integrated into our analyses. Our results also revealed the importance of understanding how molecular kinships derived from a particular estimator are scaled, if the scale differs significantly from pedigree-based kinships. We describe the theory behind the genetic metrics impacted and provide general guidance on incorporating empirical kinships into ex situ population management as well as provide suggestions for sampling strategies to minimize the biases inherent in merging two types of kinship estimators.


Subject(s)
Polymorphism, Single Nucleotide , Software , North America , Sequence Analysis, DNA , Pedigree
5.
Genes Dev ; 37(9-10): 354-376, 2023 05 01.
Article in English | MEDLINE | ID: mdl-37137715

ABSTRACT

RNA granules are mesoscale assemblies that form in the absence of limiting membranes. RNA granules contain factors for RNA biogenesis and turnover and are often assumed to represent specialized compartments for RNA biochemistry. Recent evidence suggests that RNA granules assemble by phase separation of subsoluble ribonucleoprotein (RNP) complexes that partially demix from the cytoplasm or nucleoplasm. We explore the possibility that some RNA granules are nonessential condensation by-products that arise when RNP complexes exceed their solubility limit as a consequence of cellular activity, stress, or aging. We describe the use of evolutionary and mutational analyses and single-molecule techniques to distinguish functional RNA granules from "incidental condensates."


Subject(s)
Cytoplasmic Granules , Ribonucleoproteins , Ribonucleoproteins/genetics , Cytoplasmic Ribonucleoprotein Granules , RNA/chemistry
6.
Development ; 150(2)2023 01 15.
Article in English | MEDLINE | ID: mdl-36715566

ABSTRACT

A hallmark of all germ cells is the presence of germ granules: assemblies of proteins and RNA that lack a delineating membrane and are proposed to form via condensation. Germ granules across organisms share several conserved components, including factors required for germ cell fate determination and maintenance, and are thought to be linked to germ cell development. The molecular functions of germ granules, however, remain incompletely understood. In this Development at a Glance article, we survey germ granules across organisms and developmental stages, and highlight emerging themes regarding granule regulation, dynamics and proposed functions.


Subject(s)
Caenorhabditis elegans , Germ Cell Ribonucleoprotein Granules , Animals , Caenorhabditis elegans/metabolism , Germ Cells/metabolism , RNA-Binding Proteins/metabolism , RNA/metabolism , Cytoplasmic Granules/metabolism
7.
Zoo Biol ; 42(1): 5-16, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35560574

ABSTRACT

Science-based management confers a variety of benefits to wildlife populations that are cooperatively managed by zoos and aquariums, including those managed through the Association of Zoos and Aquariums. Briefly, when management strategies are successful, they result in reproductively robust populations that better retain genetic diversity and limit inbreeding than unmanaged populations. Although the benefits of demographic and genetic management have been well documented throughout both the scientific and popular literature, it has also been established that the majority of managed populations in zoos and aquariums are not meeting the minimum criteria believed to convey long-term biological viability. For most of these populations, an inability to meet viability criteria is not an inherent failure of how cooperative management is implemented. Furthermore, in recent years, we have perceived that the need to meet specific viability goals sometimes has obscured the benefits that these populations receive from rigorous, science-based management. To better clarify the conversation surrounding population viability in zoos and aquariums, we seek to decouple viability measures and how they predict population persistence from the benefits conferred to populations through science-based management. A primary goal of population management is to facilitate the persistence of priority species for longer than would be expected if no such management were implemented. Although current viability measures and future projections of viability are important tools for assessing the likelihood of population persistence, they are not indicators of which populations may most benefit from science-based management. Here, we review the history and purpose of applying science-based management to zoo and aquarium populations, describe measures of population viability and caution against confusing those measures of viability with population management goals or long-term population sustainability, and clearly articulate the benefits conferred to zoo and aquarium populations by science-based management.


Subject(s)
Animals, Zoo , Conservation of Natural Resources , Animals , Animals, Zoo/genetics , Animal Husbandry , Animals, Wild , Inbreeding
8.
Mol Ecol Resour ; 22(7): 2546-2558, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35510790

ABSTRACT

Researchers have long debated which estimator of relatedness best captures the degree of relationship between two individuals. In the genomics era, this debate continues, with relatedness estimates being sensitive to the methods used to generate markers, marker quality, and levels of diversity in sampled individuals. Here, we compare six commonly used genome-based relatedness estimators (kinship genetic distance [KGD], Wang maximum likelihood [TrioML], Queller and Goodnight [Rxy ], Kinship INference for Genome-wide association studies [KING-robust), and pairwise relatedness [RAB ], allele-sharing coancestry [AS]) across five species bred in captivity-including three birds and two mammals-with varying degrees of reliable pedigree data, using reduced-representation and whole genome resequencing data. Genome-based relatedness estimates varied widely across estimators, sequencing methods, and species, yet the most consistent results for known first order relationships were found using Rxy , RAB , and AS. However, AS was found to be less consistently correlated with known pedigree relatedness than either Rxy or RAB . Our combined results indicate there is not a single genome-based estimator that is ideal across different species and data types. To determine the most appropriate genome-based relatedness estimator for each new data set, we recommend assessing the relative: (1) correlation of candidate estimators with known relationships in the pedigree and (2) precision of candidate estimators with known first-order relationships. These recommendations are broadly applicable to conservation breeding programmes, particularly where genome-based estimates of relatedness can complement and complete poorly pedigreed populations. Given a growing interest in the application of wild pedigrees, our results are also applicable to in situ wildlife management.


Subject(s)
Breeding , Genome-Wide Association Study , Alleles , Animals , Animals, Wild , Humans , Mammals , Models, Genetic , Pedigree
9.
Science ; 373(6560): 1218-1224, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34516789

ABSTRACT

Biomolecular condensates are cellular compartments that can form by phase separation in the absence of limiting membranes. Studying the P granules of Caenorhabditis elegans, we find that condensate dynamics are regulated by protein clusters that adsorb to the condensate interface. Using in vitro reconstitution, live observations, and theory, we demonstrate that localized assembly of P granules is controlled by MEG-3, an intrinsically disordered protein that forms low dynamic assemblies on P granules. Following classic Pickering emulsion theory, MEG-3 clusters lower surface tension and slow down coarsening. During zygote polarization, MEG-3 recruits the DYRK family kinase MBK-2 to accelerate spatially regulated growth of the P granule emulsion. By tuning condensate-cytoplasm exchange, interfacial clusters regulate the structural integrity of biomolecular condensates, reminiscent of the role of lipid bilayers in membrane-bound organelles.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/physiology , Intrinsically Disordered Proteins/metabolism , Animals , Caenorhabditis elegans/metabolism , Oocytes/metabolism , Protein-Tyrosine Kinases/metabolism , RNA-Binding Proteins/metabolism , Zygote/metabolism
10.
Chem Commun (Camb) ; 57(60): 7445-7448, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34232232

ABSTRACT

G-quadruplex DNA interacts with the N-terminal intrinsically disordered domain of the DEAD-box helicase Ded1p, diminishing RNA unwinding activity but enhancing liquid-liquid phase separation of Ded1p in vitro and in cells. The data highlight multifaceted effects of quadruplex DNA on an enzyme with intrinsically disordered domains.


Subject(s)
DEAD-box RNA Helicases/metabolism , DNA/metabolism , G-Quadruplexes , Saccharomyces cerevisiae Proteins/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , DEAD-box RNA Helicases/chemistry , DNA/genetics , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Phase Transition , Protein Domains , RNA/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/chemistry
11.
Elife ; 102021 06 09.
Article in English | MEDLINE | ID: mdl-34106046

ABSTRACT

Germ granules are protein-RNA condensates that segregate with the embryonic germline. In Caenorhabditis elegans embryos, germ (P) granule assembly requires MEG-3, an intrinsically disordered protein that forms RNA-rich condensates on the surface of PGL condensates at the core of P granules. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). We find that MEG-3 is a modular protein that uses its IDR to bind RNA and its C-terminus to drive condensation. The HMGL motif mediates binding to PGL-3 and is required for co-assembly of MEG-3 and PGL-3 condensates in vivo. Mutations in HMGL cause MEG-3 and PGL-3 to form separate condensates that no longer co-segregate to the germline or recruit RNA. Our findings highlight the importance of protein-based condensation mechanisms and condensate-condensate interactions in the assembly of RNA-rich germ granules.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cytoplasmic Granules/metabolism , Intrinsically Disordered Proteins/metabolism , RNA, Helminth/metabolism , Amino Acid Motifs , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/chemistry , Cytoplasmic Granules/chemistry , Embryo, Nonmammalian , Intrinsically Disordered Proteins/chemistry , RNA, Helminth/chemistry
12.
Methods Enzymol ; 646: 83-113, 2021.
Article in English | MEDLINE | ID: mdl-33453934

ABSTRACT

Biomolecular condensates (BCs) are intracellular condensates that form by phase separation of proteins and RNA from the nucleoplasm or cytoplasm. BCs often form complex assemblies where compositionally distinct condensates wet each other without mixing. In this chapter, we describe methods to reconstitute multi-condensate assemblies from purified components. We include protocols to express, purify, label, and analyze the dynamics of proteins and RNAs that drive multi-condensate assembly. Analysis of the condensation and wetting behaviors of condensates in cell-free reconstituted systems can be used to define the molecular interactions that regulate BCs in cells.


Subject(s)
Proteins , RNA , Cytoplasm
13.
Nat Commun ; 11(1): 5574, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149109

ABSTRACT

Liquid-liquid phase separation (LLPS) of proteins that leads to formation of membrane-less organelles is critical to many biochemical processes in the cell. However, dysregulated LLPS can also facilitate aberrant phase transitions and lead to protein aggregation and disease. Accordingly, there is great interest in identifying small molecules that modulate LLPS. Here, we demonstrate that 4,4'-dianilino-1,1'-binaphthyl-5,5'-disulfonic acid (bis-ANS) and similar compounds are potent biphasic modulators of protein LLPS. Depending on context, bis-ANS can both induce LLPS de novo as well as prevent formation of homotypic liquid droplets. Our study also reveals the mechanisms by which bis-ANS and related compounds modulate LLPS and identify key chemical features of small molecules required for this activity. These findings may provide a foundation for the rational design of small molecule modulators of LLPS with therapeutic value.


Subject(s)
Anilino Naphthalenesulfonates/chemistry , Anilino Naphthalenesulfonates/pharmacology , Cytoplasmic Granules/drug effects , DNA-Binding Proteins/chemistry , Phase Transition , Anilino Naphthalenesulfonates/toxicity , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Cytosol/metabolism , HCT116 Cells , Heparin/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Poly A/chemistry , Protein Domains/genetics
14.
RNA ; 26(5): 541-549, 2020 05.
Article in English | MEDLINE | ID: mdl-32014999

ABSTRACT

The PI3K/Akt/mTOR kinase pathway is extensively deregulated in human cancers. One critical node under regulation of this signaling axis is eukaryotic initiation factor (eIF) 4F, a complex involved in the control of translation initiation rates. eIF4F-dependent addictions arise during tumor initiation and maintenance due to increased eIF4F activity-generally in response to elevated PI3K/Akt/mTOR signaling flux. There is thus much interest in exploring eIF4F as a small molecule target for the development of new anticancer drugs. The DEAD-box RNA helicase, eIF4A, is an essential subunit of eIF4F, and several potent small molecules (rocaglates, hippuristanol, pateamine A) affecting its activity have been identified and shown to demonstrate anticancer activity in vitro and in vivo in preclinical models. Recently, a number of new small molecules have been reported as having the capacity to target and inhibit eIF4A. Here, we undertook a comparative analysis of their biological activity and specificity relative to the eIF4A inhibitor, hippuristanol.


Subject(s)
Antineoplastic Agents/chemistry , Eukaryotic Initiation Factor-4A/chemistry , Neoplasms/drug therapy , Small Molecule Libraries/chemistry , Sterols/chemistry , Antineoplastic Agents/pharmacology , Benzofurans/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Epoxy Compounds/chemistry , Eukaryotic Initiation Factor-4A/antagonists & inhibitors , Eukaryotic Initiation Factor-4F/antagonists & inhibitors , Eukaryotic Initiation Factor-4F/chemistry , Humans , Macrolides/chemistry , Neoplasms/genetics , Phosphatidylinositol 3-Kinases/genetics , Protein Biosynthesis/drug effects , Proto-Oncogene Proteins c-akt/genetics , Small Molecule Libraries/pharmacology , Sterols/pharmacology , TOR Serine-Threonine Kinases/genetics , Thiazoles/chemistry
15.
Nat Struct Mol Biol ; 27(2): 221, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31896770

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

16.
Elife ; 92020 01 24.
Article in English | MEDLINE | ID: mdl-31975687

ABSTRACT

RNA granules are protein/RNA condensates. How specific mRNAs are recruited to cytoplasmic RNA granules is not known. Here, we characterize the transcriptome and assembly of P granules, RNA granules in the C. elegans germ plasm. We find that P granules recruit mRNAs by condensation with the disordered protein MEG-3. MEG-3 traps mRNAs into non-dynamic condensates in vitro and binds to ~500 mRNAs in vivo in a sequence-independent manner that favors embryonic mRNAs with low ribosome coverage. Translational stress causes additional mRNAs to localize to P granules and translational activation correlates with P granule exit for two mRNAs coding for germ cell fate regulators. Localization to P granules is not required for translational repression but is required to enrich mRNAs in the germ lineage for robust germline development. Our observations reveal similarities between P granules and stress granules and identify intrinsically-disordered proteins as drivers of RNA condensation during P granule assembly.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Cytoplasmic Granules/metabolism , Intrinsically Disordered Proteins/metabolism , RNA, Messenger/metabolism , Animals , Caenorhabditis elegans/metabolism , Germ Cells , Immunoprecipitation , Protein Binding , Protein Biosynthesis
17.
Zoo Biol ; 39(2): 121-128, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31833594

ABSTRACT

Hybridization among closely related species is a concern in zoo and aquarium populations where unpedigreed animals are frequently exchanged with the private sector. In this study, we examine possible hybridization in a group of Nubian ibex (Capra nubiana) imported into the Association of Zoos and Aquariums' (AZA) Species Survival Program (SSP) from a private institution. These individuals appeared smaller in stature than adult SSP Nubian ibex and were excluded from breeding recommendations over the concern that they were hybrids. Twenty-six microsatellites were used to rule out recent hybridization with domestic goats, Siberian ibex (Capra sibirica), and Alpine ibex (Capra ibex). We argue that natural phenotypic variation across the large geographic range of Nubian ibex may account for the small stature of the imported ibex, as private institutions may have historically acquired individuals from locations that differed from the SSP founders. However, the imported Nubian ibex appeared genetically differentiated from the SSP Nubian ibex and may represent a source of genetic variation for the managed population.


Subject(s)
Goats/classification , Goats/genetics , Hybridization, Genetic , Animals , Animals, Zoo/genetics , Body Size , Breeding , Female , Male , Microsatellite Repeats/genetics , Phenotype
18.
Nat Struct Mol Biol ; 26(3): 220-226, 2019 03.
Article in English | MEDLINE | ID: mdl-30833787

ABSTRACT

RNA granules are subcellular compartments that are proposed to form by liquid-liquid phase separation (LLPS), a thermodynamic process that partitions molecules between dilute liquid phases and condensed liquid phases. The mechanisms that localize liquid phases in cells, however, are not fully understood. P granules are RNA granules that form in the posterior of Caenorhabditis elegans embryos. Theoretical studies have suggested that spontaneous LLPS of the RNA-binding protein PGL-3 with RNA drives the assembly of P granules. We find that the PGL-3 phase is intrinsically labile and requires a second phase for stabilization in embryos. The second phase is formed by gel-like assemblies of the disordered protein MEG-3 that associate with liquid PGL-3 droplets in the embryo posterior. Co-assembly of gel phases and liquid phases confers local stability and long-range dynamics, both of which contribute to localized assembly of P granules. Our findings suggest that condensation of RNA granules can be regulated spatially by gel-like polymers that stimulate LLPS locally in the cytoplasm.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/embryology , RNA-Binding Proteins/metabolism , RNA/metabolism , Animals , Caenorhabditis elegans/metabolism , Cytoplasm/metabolism , Liquid-Liquid Extraction
20.
Zoo Biol ; 38(1): 106-118, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30465726

ABSTRACT

The global zoo and aquarium community widely recognizes that its animal collections and cooperative breeding programs are facing a sustainability crisis. It has become commonly accepted that numerous priority species cannot be maintained unless new management strategies are adopted. While molecular data have the potential to greatly improve management across a range of scenarios, they have been generally underutilized by the zoo and aquarium community. This failure to effectively apply molecular data to collection management has been due, in part, to a paucity of resources within the community on which to base informed decisions about when the use of such data is appropriate and what steps are necessary to successfully integrate data into management. Here, we identify three broad areas of inquiry where molecular data can inform management: 1) taxonomic identification; 2) incomplete or unknown pedigrees; and 3) hereditary disease. Across these topics, we offer a discussion of the advantages, limitations, and considerations for applying molecular data to ex situ animal populations in a style accessible to zoo and aquarium professionals. Ultimately, we intend for this compiled information to serve as a resource for the community to help ensure that molecular projects directly and effectively benefit the long-term persistence of ex situ populations.


Subject(s)
Animals, Zoo/genetics , Conservation of Natural Resources/methods , Animal Husbandry , Animals , Breeding , Endangered Species , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL