Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Biobehav Rev ; 162: 105728, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796123

ABSTRACT

1H-Magnetic Resonance Spectroscopy (MRS) is a non-invasive technique that can be used to quantify the concentrations of metabolites in the brain in vivo. MRS findings in the context of autism are inconsistent and conflicting. We performed a systematic review and meta-analysis of MRS studies measuring glutamate and gamma-aminobutyric acid (GABA), as well as brain metabolites involved in energy metabolism (glutamine, creatine), neural and glial integrity (e.g. n-acetyl aspartate (NAA), choline, myo-inositol) and oxidative stress (glutathione) in autism cohorts. Data were extracted and grouped by metabolite, brain region and several other factors before calculation of standardised effect sizes. Overall, we find significantly lower concentrations of GABA and NAA in autism, indicative of disruptions to the balance between excitation/inhibition within brain circuits, as well as neural integrity. Further analysis found these alterations are most pronounced in autistic children and in limbic brain regions relevant to autism phenotypes. Additionally, we show how study outcome varies due to demographic and methodological factors , emphasising the importance of conforming with standardised consensus study designs and transparent reporting.


Subject(s)
Autistic Disorder , Brain , Magnetic Resonance Spectroscopy , Humans , Autistic Disorder/metabolism , Autistic Disorder/diagnostic imaging , Magnetic Resonance Spectroscopy/methods , Brain/metabolism , Brain/diagnostic imaging , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism
2.
Autism Res ; 17(5): 917-922, 2024 May.
Article in English | MEDLINE | ID: mdl-38576253

ABSTRACT

The mechanisms underlying atypical sensory processing in autism remain to be elucidated, but research points toward a role of the glutamatergic/GABAergic balance. To investigate the potential relationships between visual sensitivity and its molecular correlates in autism, we combined data from electroencephalography (EEG) and magnetic resonance spectroscopy (MRS) studies. Twenty autistic adults and sixteen neurotypical adults (NT) participated in both an EEG study assessing visual sensitivity (Sapey-Triomphe et al., Autism Research, 2023) and in an MRS study measuring Glx and GABA+ concentrations in the occipital cortex (Sapey-Triomphe et al., Molecular Autism, 2021). These studies revealed no group differences in neural detection thresholds or in Glx/GABA levels in the occipital cortex. Neural detection thresholds for contrast and spatial frequency (SF) were determined using fast periodic visual stimulations and neural frequency tagging. In the present study, Glx/GABA+ concentrations in the occipital cortex and neural detection thresholds did not differ between groups. Interestingly, lower Glx/GABA+ ratios were associated with lower contrast detection thresholds and higher SF detection thresholds. These correlations were also significant within the neurotypical and autistic groups. This report suggests that the Glx/GABA balance regulates visual detection thresholds across individuals. In both autistic and NTs, lower Glx/GABA ratios in the occipital cortex allow for better detection of visual inputs at the neural level. This study sheds light on the neurochemical underpinnings of visual sensitivity in autism and warrants further investigation.


Subject(s)
Autistic Disorder , Electroencephalography , Occipital Lobe , Visual Perception , gamma-Aminobutyric Acid , Adult , Female , Humans , Male , Young Adult , Autistic Disorder/physiopathology , Autistic Disorder/metabolism , Contrast Sensitivity/physiology , Electroencephalography/methods , gamma-Aminobutyric Acid/metabolism , Glutamic Acid/metabolism , Glutamine/metabolism , Magnetic Resonance Spectroscopy/methods , Occipital Lobe/physiopathology , Occipital Lobe/metabolism , Photic Stimulation/methods , Visual Perception/physiology
3.
BMC Psychiatry ; 24(1): 319, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38658877

ABSTRACT

BACKGROUND: The underlying neurobiology of the complex autism phenotype remains obscure, although accumulating evidence implicates the serotonin system and especially the 5HT2A receptor. However, previous research has largely relied upon association or correlation studies to link differences in serotonin targets to autism. To directly establish that serotonergic signalling is involved in a candidate brain function our approach is to change it and observe a shift in that function. We will use psilocybin as a pharmacological probe of the serotonin system in vivo. We will directly test the hypothesis that serotonergic targets of psilocybin - principally, but not exclusively, 5HT2A receptor pathways-function differently in autistic and non-autistic adults. METHODS: The 'PSILAUT' "shiftability" study is a case-control study autistic and non-autistic adults. How neural responses 'shift' in response to low doses (2 mg and 5 mg) of psilocybin compared to placebo will be examined using multimodal techniques including functional MRI and EEG. Each participant will attend on up to three separate visits with drug or placebo administration in a double-blind and randomized order. RESULTS: This study will provide the first direct evidence that the serotonin targets of psilocybin function differently in the autistic and non-autistic brain. We will also examine individual differences in serotonin system function. CONCLUSIONS: This work will inform our understanding of the neurobiology of autism as well as decisions about future clinical trials of psilocybin and/or related compounds including stratification approaches. TRIAL REGISTRATION: NCT05651126.


Subject(s)
Autistic Disorder , Brain , Magnetic Resonance Imaging , Psilocybin , Adolescent , Adult , Female , Humans , Male , Young Adult , Autistic Disorder/drug therapy , Brain/drug effects , Brain/metabolism , Brain/physiopathology , Case-Control Studies , Double-Blind Method , Electroencephalography , Hallucinogens/pharmacology , Hallucinogens/therapeutic use , Psilocybin/therapeutic use , Psilocybin/pharmacology , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin/metabolism , Randomized Controlled Trials as Topic
4.
Cereb Cortex ; 34(3)2024 03 01.
Article in English | MEDLINE | ID: mdl-38430105

ABSTRACT

Human brain development is ongoing throughout childhood, with for example, myelination of nerve fibers and refinement of synaptic connections continuing until early adulthood. 1H-Magnetic Resonance Spectroscopy (1H-MRS) can be used to quantify the concentrations of endogenous metabolites (e.g. glutamate and γ -aminobutyric acid (GABA)) in the human brain in vivo and so can provide valuable, tractable insight into the biochemical processes that support postnatal neurodevelopment. This can feasibly provide new insight into and aid the management of neurodevelopmental disorders by providing chemical markers of atypical development. This study aims to characterize the normative developmental trajectory of various brain metabolites, as measured by 1H-MRS from a midline posterior parietal voxel. We find significant non-linear trajectories for GABA+ (GABA plus macromolecules), Glx (glutamate + glutamine), total choline (tCho) and total creatine (tCr) concentrations. Glx and GABA+ concentrations steeply decrease across childhood, with more stable trajectories across early adulthood. tCr and tCho concentrations increase from childhood to early adulthood. Total N-acetyl aspartate (tNAA) and Myo-Inositol (mI) concentrations are relatively stable across development. Trajectories likely reflect fundamental neurodevelopmental processes (including local circuit refinement) which occur from childhood to early adulthood and can be associated with cognitive development; we find GABA+ concentrations significantly positively correlate with recognition memory scores.


Subject(s)
Glutamic Acid , Glutamine , Child , Humans , Adolescent , Young Adult , Glutamine/metabolism , Magnetic Resonance Spectroscopy/methods , Glutamic Acid/metabolism , Brain/diagnostic imaging , Brain/metabolism , Choline/metabolism , Creatine/metabolism , Inositol/metabolism , gamma-Aminobutyric Acid/metabolism , Receptors, Antigen, T-Cell/metabolism , Aspartic Acid/metabolism
5.
Autism Res ; 17(3): 512-528, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279628

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by social communication challenges and repetitive behaviors. Altered neurometabolite levels, including glutathione (GSH) and gamma-aminobutyric acid (GABA), have been proposed as potential contributors to the biology underlying ASD. This study investigated whether cerebral GSH or GABA levels differ between a cohort of children aged 8-12 years with ASD (n = 52) and typically developing children (TDC, n = 49). A comprehensive analysis of GSH and GABA levels in multiple brain regions, including the primary motor cortex (SM1), thalamus (Thal), medial prefrontal cortex (mPFC), and supplementary motor area (SMA), was conducted using single-voxel HERMES MR spectroscopy at 3T. The results revealed no significant differences in cerebral GSH or GABA levels between the ASD and TDC groups across all examined regions. These findings suggest that the concentrations of GSH (an important antioxidant and neuromodulator) and GABA (a major inhibitory neurotransmitter) do not exhibit marked alterations in children with ASD compared to TDC. A statistically significant positive correlation was observed between GABA levels in the SM1 and Thal regions with ADHD inattention scores. No significant correlation was found between metabolite levels and hyper/impulsive scores of ADHD, measures of core ASD symptoms (ADOS-2, SRS-P) or adaptive behavior (ABAS-2). While both GSH and GABA have been implicated in various neurological disorders, the current study provides valuable insights into the specific context of ASD and highlights the need for further research to explore other neurochemical alterations that may contribute to the pathophysiology of this complex disorder.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child , Humans , Magnetic Resonance Spectroscopy/methods , Autistic Disorder/metabolism , Brain , Glutathione/metabolism , gamma-Aminobutyric Acid/metabolism
6.
NMR Biomed ; 37(7): e5092, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38154459

ABSTRACT

Several studies have suggested that atypical social processing in neurodevelopmental conditions (e.g. autism) is associated with differences in excitation and inhibition, through changes in the levels of glutamate and gamma-aminobutyric acid (GABA). While associations between baseline metabolite levels and behaviours can be insightful, assessing the neurometabolic response of GABA and glutamate during social processing may explain altered neurochemical function in more depth. Thus far, there have been no attempts to determine whether changes in metabolite levels are detectable using functional MRS (fMRS) during social processing in a control population. We performed Mescher-Garwood point resolved spectroscopy edited fMRS to measure the dynamic response of GABA and glutamate in the superior temporal sulcus (STS) and visual cortex (V1) while viewing social stimuli, using a design that allows for analysis in both block and event-related approaches. Sliding window analyses were used to investigate GABA and glutamate dynamics at higher temporal resolution. The changes of GABA and glutamate levels with social stimulus were largely non-significant. A small decrease in GABA levels was observed during social stimulus presentation in V1, but no change was observed in STS. Conversely, non-social stimulus elicited changes in both GABA and glutamate levels in both regions. Our findings suggest that the current experimental design primarily captures effects of visual stimulation, not social processing. Here, we discuss the feasibility of using fMRS analysis approaches to assess changes in metabolite response.


Subject(s)
Feasibility Studies , Glutamic Acid , Magnetic Resonance Spectroscopy , gamma-Aminobutyric Acid , Glutamic Acid/metabolism , gamma-Aminobutyric Acid/metabolism , Humans , Male , Adult , Female , Social Behavior , Young Adult , Visual Cortex/metabolism , Visual Cortex/physiology
7.
J Child Psychol Psychiatry ; 65(6): 862-865, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38130022

ABSTRACT

Clinical trials of pharmacological candidates targeting the core features of autism have largely failed. This is despite evidence linking differences in multiple neurochemical systems to brain function in autism. While this has in part been explained by the heterogeneity of the autistic population, the field has largely relied upon association studies to link brain chemistry to function. The only way to directly establish that a neurotransmitter or neuromodulator is involved in a candidate brain function is to change it and observe a shift in that function. This experimental approach dominates preclinical neuroscience, but not human studies. There is little direct experimental evidence describing how neurochemical systems modulate information processing in the living human brain. Thus, our understanding of how neurochemical differences contribute to neurodiversity is limited, impeding our ability to translate findings from animal studies into humans. Here, we introduce our 'shiftability' paradigm, an approach to bridge the translational gap in autism research. We provide an overview of the guiding principles and methodologies we use to directly test the hypothesis that neurochemical systems function differently in autistic and non-autistic individuals.


Subject(s)
Translational Research, Biomedical , Humans , Autistic Disorder/physiopathology , Neurosciences , Autism Spectrum Disorder/physiopathology , Autism Spectrum Disorder/drug therapy , Autism Spectrum Disorder/metabolism , Animals , Brain/physiopathology , Brain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL