Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Immunol ; 24(11): 1879-1889, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37872315

ABSTRACT

Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.


Subject(s)
COVID-19 , Mycobiome , Humans , Animals , Mice , Antifungal Agents , Dysbiosis , Neutrophils , Candida albicans , Immunoglobulin G
2.
Nature ; 611(7937): 787-793, 2022 11.
Article in English | MEDLINE | ID: mdl-36323781

ABSTRACT

Emerging studies indicate that cooperation between neurons and immune cells regulates antimicrobial immunity, inflammation and tissue homeostasis. For example, a neuronal rheostat provides excitatory or inhibitory signals that control the functions of tissue-resident group 2 innate lymphoid cells (ILC2s) at mucosal barrier surfaces1-4. ILC2s express NMUR1, a receptor for neuromedin U (NMU), which is a prominent cholinergic neuropeptide that promotes ILC2 responses5-7. However, many functions of ILC2s are shared with adaptive lymphocytes, including the production of type 2 cytokines8,9 and the release of tissue-protective amphiregulin (AREG)10-12. Consequently, there is controversy regarding whether innate lymphoid cells and adaptive lymphocytes perform redundant or non-redundant functions13-15. Here we generate a new genetic tool to target ILC2s for depletion or gene deletion in the presence of an intact adaptive immune system. Transgenic expression of iCre recombinase under the control of the mouse Nmur1 promoter enabled ILC2-specific deletion of AREG. This revealed that ILC2-derived AREG promotes non-redundant functions in the context of antiparasite immunity and tissue protection following intestinal damage and inflammation. Notably, NMU expression levels increased in inflamed intestinal tissues from both mice and humans, and NMU induced AREG production in mouse and human ILC2s. These results indicate that neuropeptide-mediated regulation of non-redundant functions of ILC2s is an evolutionarily conserved mechanism that integrates immunity and tissue protection.


Subject(s)
Immunity, Innate , Intestinal Mucosa , Lymphocytes , Neuropeptides , Animals , Humans , Mice , Cytokines/immunology , Cytokines/metabolism , Immunity, Innate/immunology , Inflammation/immunology , Inflammation/parasitology , Inflammation/pathology , Lymphocytes/immunology , Neuropeptides/metabolism , Neuropeptides/physiology , Amphiregulin , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestinal Mucosa/pathology
3.
Cell ; 185(22): 4170-4189.e20, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36240781

ABSTRACT

Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Mice , Animals , Gastrointestinal Microbiome/physiology , Nociceptors/physiology , Substance P , Dysbiosis , Inflammation
4.
Cancer Prev Res (Phila) ; 15(12): 803-814, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36049217

ABSTRACT

Bacteria are believed to play an important role in intestinal tumorigenesis and contribute to both gut luminal and circulating metabolites. Celecoxib, a selective cyclooxygenase-2 inhibitor, alters gut bacteria and metabolites in association with suppressing the development of intestinal polyps in mice. The current study sought to evaluate whether celecoxib exerts its chemopreventive effects, in part, through intestinal bacteria and metabolomic alterations. Using ApcMin/+ mice, we demonstrated that treatment with broad-spectrum antibiotics (ABx) reduced abundance of gut bacteria and attenuated the ability of celecoxib to suppress intestinal tumorigenesis. Use of ABx also impaired celecoxib's ability to shift microbial populations and gut luminal and circulating metabolites. Treatment with ABx alone markedly reduced tumor number and size in ApcMin/+ mice, in conjunction with profoundly altering the metabolite profiles of the intestinal lumen and blood. Many of the metabolite changes in the gut and circulation overlapped and included shifts in microbially derived metabolites. To complement these findings in mice, we evaluated the effects of ABx on circulating metabolites in patients with colon cancer. This showed that ABx treatment led to a shift in blood metabolites, including several that were of bacterial origin. Importantly, changes in metabolites in patients given ABx overlapped with alterations found in mice that also received ABx. Taken together, these findings suggest a potential role for bacterial metabolites in mediating both the chemopreventive effects of celecoxib and intestinal tumor growth. PREVENTION RELEVANCE: This study demonstrates novel mechanisms by which chemopreventive agents exert their effects and gut microbiota impact intestinal tumor development. These findings have the potential to lead to improved cancer prevention strategies by modulating microbes and their metabolites.


Subject(s)
Anticarcinogenic Agents , Gastrointestinal Microbiome , Mice , Animals , Celecoxib/pharmacology , Cyclooxygenase 2 Inhibitors/pharmacology , Metabolome , Anti-Bacterial Agents/pharmacology , Anticarcinogenic Agents/pharmacology , Bacteria , Carcinogenesis
6.
Anim Microbiome ; 4(1): 36, 2022 Jun 04.
Article in English | MEDLINE | ID: mdl-35659110

ABSTRACT

BACKGROUND: Multidrug resistance in companion animals poses significant risks to animal and human health. Prolonged antimicrobial drug (AMD) treatment in animals is a potential source of selection pressure for antimicrobial resistance (AMR) including in the gastrointestinal microbiota. We performed a prospective study of dogs treated for septic peritonitis, pyometra, or bacterial pneumonia and collected repeated fecal samples over 60 days. Bacterial cultures and direct molecular analyses of fecal samples were performed including targeted resistance gene profiling. RESULTS: Resistant Escherichia coli increased after 1 week of treatment (D1:21.4% vs. D7:67.9% P < 0.001) and returned to baseline proportions by D60 (D7:67.9% vs D60:42.9%, P = 0.04). Dogs with septic peritonitis were hospitalized significantly longer than those with pneumonia or pyometra. Based on genetic analysis, Simpson's diversity index significantly decreased after 1 week of treatment (D1 to D7, P = 0.008), followed by a gradual increase to day 60 (D1 and D60, P = 0.4). Detection of CTX-M was associated with phenotypic resistance to third-generation cephalosporins in E. coli (OR 12.1, 3.3-68.0, P < 0.001). Lincosamide and macrolide-resistance genes were more frequently recovered on days 14 and 28 compared to day 1 (P = 0.002 and P = 0.004 respectively). CONCLUSION: AMR was associated with prescribed drugs but also developed against AMDs not administered during the study. Companion animals may be reservoirs of zoonotic multidrug resistant pathogens, suggesting that veterinary AMD stewardship and surveillance efforts should be prioritized.

7.
Nature ; 603(7902): 672-678, 2022 03.
Article in English | MEDLINE | ID: mdl-35296857

ABSTRACT

The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1ß-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.


Subject(s)
Fungi , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Microbiota , Mycobiome , Animals , CRISPR-Cas Systems , Candida albicans , Fungi/genetics , Fungi/pathogenicity , Genetic Variation , Humans , Immunity , Inflammation , Mammals
8.
Nat Immunol ; 23(2): 251-261, 2022 02.
Article in English | MEDLINE | ID: mdl-35102343

ABSTRACT

Tumor necrosis factor (TNF) drives chronic inflammation and cell death in the intestine, and blocking TNF is a therapeutic approach in inflammatory bowel disease (IBD). Despite this knowledge, the pathways that protect the intestine from TNF are incompletely understood. Here we demonstrate that group 3 innate lymphoid cells (ILC3s) protect the intestinal epithelium from TNF-induced cell death. This occurs independent of interleukin-22 (IL-22), and we identify that ILC3s are a dominant source of heparin-binding epidermal growth factor-like growth factor (HB-EGF). ILC3s produce HB-EGF in response to prostaglandin E2 (PGE2) and engagement of the EP2 receptor. Mice lacking ILC3-derived HB-EGF exhibit increased susceptibility to TNF-mediated epithelial cell death and experimental intestinal inflammation. Finally, human ILC3s produce HB-EGF and are reduced from the inflamed intestine. These results define an essential role for ILC3-derived HB-EGF in protecting the intestine from TNF and indicate that disruption of this pathway contributes to IBD.


Subject(s)
Heparin-binding EGF-like Growth Factor/immunology , Immunity, Innate/immunology , Inflammation/immunology , Intestines/immunology , Lymphocytes/immunology , Tumor Necrosis Factor-alpha/immunology , Animals , Epithelial Cells/immunology , Intestinal Mucosa/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology
9.
Cell ; 185(5): 831-846.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35176228

ABSTRACT

Fungal communities (the mycobiota) are an integral part of the gut microbiota, and the disruption of their integrity contributes to local and gut-distal pathologies. Yet, the mechanisms by which intestinal fungi promote homeostasis remain unclear. We characterized the mycobiota biogeography along the gastrointestinal tract and identified a subset of fungi associated with the intestinal mucosa of mice and humans. Mucosa-associated fungi (MAF) reinforced intestinal epithelial function and protected mice against intestinal injury and bacterial infection. Notably, intestinal colonization with a defined consortium of MAF promoted social behavior in mice. The gut-local effects on barrier function were dependent on IL-22 production by CD4+ T helper cells, whereas the effects on social behavior were mediated through IL-17R-dependent signaling in neurons. Thus, the spatial organization of the gut mycobiota is associated with host-protective immunity and epithelial barrier function and might be a driver of the neuroimmune modulation of mouse behavior through complementary Type 17 immune mechanisms.


Subject(s)
Gastrointestinal Microbiome , Mycobiome , Receptors, Interleukin-17/metabolism , Social Behavior , Animals , Fungi , Immunity, Mucosal , Intestinal Mucosa , Mice , Mucous Membrane
10.
Cell ; 185(3): 547-562.e22, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35051369

ABSTRACT

Hundreds of microbiota genes are associated with host biology/disease. Unraveling the causal contribution of a microbiota gene to host biology remains difficult because many are encoded by nonmodel gut commensals and not genetically targetable. A general approach to identify their gene transfer methodology and build their gene manipulation tools would enable mechanistic dissections of their impact on host physiology. We developed a pipeline that identifies the gene transfer methods for multiple nonmodel microbes spanning five phyla, and we demonstrated the utility of their genetic tools by modulating microbiome-derived short-chain fatty acids and bile acids in vitro and in the host. In a proof-of-principle study, by deleting a commensal gene for bile acid synthesis in a complex microbiome, we discovered an intriguing role of this gene in regulating colon inflammation. This technology will enable genetically engineering the nonmodel gut microbiome and facilitate mechanistic dissection of microbiota-host interactions.


Subject(s)
Gastrointestinal Microbiome/genetics , Genes, Bacterial , Animals , Bile Acids and Salts/metabolism , CRISPR-Cas Systems/genetics , Clostridium/genetics , Colitis/chemically induced , Colitis/microbiology , Colitis/pathology , Dextran Sulfate , Drug Resistance, Microbial/genetics , Female , Gene Expression Regulation, Bacterial , Gene Transfer Techniques , Germ-Free Life , Inflammation/pathology , Intestines/pathology , Male , Metabolome/genetics , Metagenomics , Mice, Inbred C57BL , Mice, Knockout , Mutagenesis, Insertional/genetics , Mutation/genetics , RNA, Ribosomal, 16S/genetics , Transcription, Genetic
11.
Microbiome ; 9(1): 215, 2021 11 03.
Article in English | MEDLINE | ID: mdl-34732258

ABSTRACT

BACKGROUND: The gut microbiome is altered in patients with inflammatory bowel disease, yet how these alterations contribute to intestinal inflammation is poorly understood. Murine models have demonstrated the importance of the microbiome in colitis since colitis fails to develop in many genetically susceptible animal models when re-derived into germ-free environments. We have previously shown that Wiskott-Aldrich syndrome protein (WASP)-deficient mice (Was-/-) develop spontaneous colitis, similar to human patients with loss-of-function mutations in WAS. Furthermore, we showed that the development of colitis in Was-/- mice is Helicobacter dependent. Here, we utilized a reductionist model coupled with multi-omics approaches to study the role of host-microbe interactions in intestinal inflammation. RESULTS: Was-/- mice colonized with both altered Schaedler flora (ASF) and Helicobacter developed colitis, while those colonized with either ASF or Helicobacter alone did not. In Was-/- mice, Helicobacter relative abundance was positively correlated with fecal lipocalin-2 (LCN2), a marker of intestinal inflammation. In contrast, WT mice colonized with ASF and Helicobacter were free of inflammation and strikingly, Helicobacter relative abundance was negatively correlated with LCN2. In Was-/- colons, bacteria breach the mucus layer, and the mucosal relative abundance of ASF457 Mucispirillum schaedleri was positively correlated with fecal LCN2. Meta-transcriptomic analyses revealed that ASF457 had higher expression of genes predicted to enhance fitness and immunogenicity in Was-/- compared to WT mice. In contrast, ASF519 Parabacteroides goldsteinii's relative abundance was negatively correlated with LCN2 in Was-/- mice, and transcriptional analyses showed lower expression of genes predicted to facilitate stress adaptation by ASF519 in Was-/-compared to WT mice. CONCLUSIONS: These studies indicate that the effect of a microbe on the immune system can be context dependent, with the same bacteria eliciting a tolerogenic response under homeostatic conditions but promoting inflammation in immune-dysregulated hosts. Furthermore, in inflamed environments, some bacteria up-regulate genes that enhance their fitness and immunogenicity, while other bacteria are less able to adapt and decrease in abundance. These findings highlight the importance of studying host-microbe interactions in different contexts and considering how the transcriptional profile and fitness of bacteria may change in different hosts when developing microbiota-based therapeutics. Video abstract.


Subject(s)
Colitis , Helicobacter , Animals , Colitis/microbiology , Disease Models, Animal , Helicobacter/genetics , Host Microbial Interactions , Humans , Inflammation , Mice
12.
Cell ; 184(19): 5015-5030.e16, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34407392

ABSTRACT

Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.


Subject(s)
Colonic Neoplasms/immunology , Colonic Neoplasms/therapy , Disease Progression , Immunity, Innate , Immunotherapy , Lymphocytes/immunology , Animals , Cell Communication/drug effects , Cell Plasticity/drug effects , Colonic Neoplasms/microbiology , Feces/microbiology , Histocompatibility Antigens Class II/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunity, Innate/drug effects , Inflammation/immunology , Inflammation/pathology , Inflammatory Bowel Diseases/immunology , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/pathology , Intestines/pathology , Lymphocytes/drug effects , Mice, Inbred C57BL , Microbiota/drug effects , Neoplasm Invasiveness , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Tissue Donors
13.
Science ; 368(6487): 186-189, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32273468

ABSTRACT

Bleeding and altered iron distribution occur in multiple gastrointestinal diseases, but the importance and regulation of these changes remain unclear. We found that hepcidin, the master regulator of systemic iron homeostasis, is required for tissue repair in the mouse intestine after experimental damage. This effect was independent of hepatocyte-derived hepcidin or systemic iron levels. Rather, we identified conventional dendritic cells (cDCs) as a source of hepcidin that is induced by microbial stimulation in mice, prominent in the inflamed intestine of humans, and essential for tissue repair. cDC-derived hepcidin acted on ferroportin-expressing phagocytes to promote local iron sequestration, which regulated the microbiota and consequently facilitated intestinal repair. Collectively, these results identify a pathway whereby cDC-derived hepcidin promotes mucosal healing in the intestine through means of nutritional immunity.


Subject(s)
Dendritic Cells/metabolism , Gastrointestinal Microbiome , Hepcidins/metabolism , Intestinal Diseases/microbiology , Intestinal Mucosa/microbiology , Intestinal Mucosa/physiology , Iron/metabolism , Animals , Cation Transport Proteins/metabolism , Fecal Microbiota Transplantation , Gene Deletion , Hepcidins/genetics , Homeostasis , Mice , Mice, Mutant Strains , Phagocytes/metabolism
14.
Cell Metab ; 31(3): 592-604.e9, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32084379

ABSTRACT

Recent studies suggest that a key mechanism whereby the gut microbiome influences energy balance and glucose homeostasis is through the recruitment of brown and beige adipocytes, primary mediators of the adaptive thermogenic response. To test this, we assessed energy expenditure and glucose metabolism in two complementary mouse models of gut microbial deficiency, which were exposed to a broad range of thermal and dietary stresses. Neither ablation of the gut microbiome, nor the substantial microbial perturbations induced by cold ambient temperatures, influenced energy expenditure during cold exposure or high-fat feeding. Nevertheless, we demonstrated a critical role for gut microbial metabolism in maintaining euglycemia through the production of amino acid metabolites that optimized hepatic TCA (tricarboxylic acid) cycle fluxes in support of gluconeogenesis. These results distinguish the dispensability of the gut microbiome for the regulation of energy expenditure from its critical contribution to the maintenance of glucose homeostasis.


Subject(s)
Gastrointestinal Microbiome , Glucose/metabolism , Homeostasis , Thermogenesis/physiology , Animals , Cold Temperature , Diet , Gluconeogenesis , Liver/metabolism , Male , Mice, Inbred C57BL
15.
Nature ; 574(7779): 543-548, 2019 10.
Article in English | MEDLINE | ID: mdl-31645720

ABSTRACT

Multicellular organisms have co-evolved with complex consortia of viruses, bacteria, fungi and parasites, collectively referred to as the microbiota1. In mammals, changes in the composition of the microbiota can influence many physiologic processes (including development, metabolism and immune cell function) and are associated with susceptibility to multiple diseases2. Alterations in the microbiota can also modulate host behaviours-such as social activity, stress, and anxiety-related responses-that are linked to diverse neuropsychiatric disorders3. However, the mechanisms by which the microbiota influence neuronal activity and host behaviour remain poorly defined. Here we show that manipulation of the microbiota in antibiotic-treated or germ-free adult mice results in significant deficits in fear extinction learning. Single-nucleus RNA sequencing of the medial prefrontal cortex of the brain revealed significant alterations in gene expression in excitatory neurons, glia and other cell types. Transcranial two-photon imaging showed that deficits in extinction learning after manipulation of the microbiota in adult mice were associated with defective learning-related remodelling of postsynaptic dendritic spines and reduced activity in cue-encoding neurons in the medial prefrontal cortex. In addition, selective re-establishment of the microbiota revealed a limited neonatal developmental window in which microbiota-derived signals can restore normal extinction learning in adulthood. Finally, unbiased metabolomic analysis identified four metabolites that were significantly downregulated in germ-free mice and have been reported to be related to neuropsychiatric disorders in humans and mouse models, suggesting that microbiota-derived compounds may directly affect brain function and behaviour. Together, these data indicate that fear extinction learning requires microbiota-derived signals both during early postnatal neurodevelopment and in adult mice, with implications for our understanding of how diet, infection, and lifestyle influence brain health and subsequent susceptibility to neuropsychiatric disorders.


Subject(s)
Extinction, Psychological/physiology , Fear/physiology , Metabolomics , Microbiota/physiology , Neurons/physiology , Animals , Anti-Bacterial Agents/pharmacology , Autistic Disorder/metabolism , Blood/metabolism , Calcium/metabolism , Cerebrospinal Fluid/chemistry , Cerebrospinal Fluid/metabolism , Cues , Dendritic Spines/drug effects , Dendritic Spines/pathology , Dendritic Spines/physiology , Extinction, Psychological/drug effects , Fear/drug effects , Feces/chemistry , Germ-Free Life , Indican/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbiota/drug effects , Microbiota/immunology , Neural Inhibition , Neuroglia/pathology , Neuroglia/physiology , Neurons/drug effects , Neurons/immunology , Neurons/pathology , Phenylpropionates/metabolism , Prefrontal Cortex/cytology , Prefrontal Cortex/drug effects , Prefrontal Cortex/immunology , Prefrontal Cortex/physiology , Schizophrenia/metabolism , Transcriptome , Vagus Nerve/physiology
16.
Nature ; 568(7752): 405-409, 2019 04.
Article in English | MEDLINE | ID: mdl-30944470

ABSTRACT

Interleukin (IL)-2 is a pleiotropic cytokine that is necessary to prevent chronic inflammation in the gastrointestinal tract1-4. The protective effects of IL-2 involve the generation, maintenance and function of regulatory T (Treg) cells4-8, and the use of low doses of IL-2 has emerged as a potential therapeutic strategy for patients with inflammatory bowel disease9. However, the cellular and molecular pathways that control the production of IL-2 in the context of intestinal health are undefined. Here we show, in a mouse model, that IL-2 is acutely required to maintain Treg cells and immunological homeostasis throughout the gastrointestinal tract. Notably, lineage-specific deletion of IL-2 in T cells did not reduce Treg cells in the small intestine. Unbiased analyses revealed that, in the small intestine, group-3 innate lymphoid cells (ILC3s) are the dominant cellular source of IL-2, which is induced selectively by IL-1ß. Macrophages in the small intestine produce IL-1ß, and activation of this pathway involves MYD88- and NOD2-dependent sensing of the microbiota. Our loss-of-function studies show that ILC3-derived IL-2 is essential for maintaining Treg cells, immunological homeostasis and oral tolerance to dietary antigens in the small intestine. Furthermore, production of IL-2 by ILC3s was significantly reduced in the small intestine of patients with Crohn's disease, and this correlated with lower frequencies of Treg cells. Our results reveal a previously unappreciated pathway in which a microbiota- and IL-1ß-dependent axis promotes the production of IL-2 by ILC3s to orchestrate immune regulation in the intestine.


Subject(s)
Immunity, Innate/immunology , Interleukin-2/immunology , Intestines/cytology , Intestines/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antigens/administration & dosage , Antigens/immunology , Crohn Disease/immunology , Crohn Disease/metabolism , Crohn Disease/pathology , Female , Gastrointestinal Microbiome/immunology , Homeostasis/immunology , Humans , Inflammation/immunology , Inflammation/pathology , Interleukin-1beta/immunology , Interleukin-1beta/metabolism , Interleukin-2/deficiency , Interleukin-2/metabolism , Intestine, Small/cytology , Intestine, Small/immunology , Macrophages/immunology , Macrophages/metabolism , Male , Mice , Myeloid Differentiation Factor 88/deficiency , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Nod2 Signaling Adaptor Protein/deficiency , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/metabolism , T-Lymphocytes, Regulatory/classification , T-Lymphocytes, Regulatory/metabolism
17.
Cell Rep ; 23(13): 3750-3758, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29949760

ABSTRACT

The intestinal tract is constantly exposed to various stimuli. Group 3 innate lymphoid cells (ILC3s) reside in lymphoid organs and in the intestinal tract and are required for immunity to enteric bacterial infection. However, the mechanisms that regulate the ILC3s in vivo remain incompletely defined. Here, we show that GPR183, a chemotactic receptor expressed on murine and human ILC3s, regulates ILC3 migration toward its ligand 7α,25-dihydroxycholesterol (7α,25-OHC) in vitro, and GPR183 deficiency in vivo leads to a disorganized distribution of ILC3s in mesenteric lymph nodes and decreased ILC3 accumulation in the intestine. GPR183 functions intrinsically in ILC3s, and GPR183-deficient mice are more susceptible to enteric bacterial infection. Together, these results reveal a role for the GPR183-7α,25-OHC pathway in regulating the accumulation, distribution, and anti-microbial and tissue-protective functions of ILC3s and define a critical role for this pathway in promoting innate immunity to enteric bacterial infection.


Subject(s)
Lymphoid Tissue/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Cell Movement , Citrobacter rodentium/pathogenicity , Cytochrome P450 Family 7/metabolism , Enterobacteriaceae Infections/pathology , Enterobacteriaceae Infections/prevention & control , Enterobacteriaceae Infections/veterinary , Humans , Hydroxycholesterols/chemistry , Hydroxycholesterols/metabolism , Immunity, Innate , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Ligands , Lymphoid Tissue/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mucous Membrane/cytology , Mucous Membrane/metabolism , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Steroid Hydroxylases/deficiency , Steroid Hydroxylases/genetics , Steroid Hydroxylases/metabolism
18.
Inflamm Bowel Dis ; 23(6): 903-911, 2017 06.
Article in English | MEDLINE | ID: mdl-28445246

ABSTRACT

BACKGROUND: Recent trials suggest fecal microbiota transplantation (FMT) with repeated enemas and high-diversity FMT donors is a promising treatment to induce remission in ulcerative colitis. METHODS: We designed a prospective, open-label pilot study to assess the safety, clinical efficacy, and microbial engraftment of single FMT delivery by colonoscopy for active ulcerative colitis using a 2-donor fecal microbiota preparation (FMP). Safety and clinical endpoints of response, remission, and mucosal healing at week 4 were assessed. Fecal DNA and rectal biopsies were used to characterize the microbiome and mucosal CD4 T cells, respectively, before and after FMT. RESULTS: Of the 20 patients enrolled in this study, 7 patients (35%) achieved a clinical response by week 4. Three patients (15%) were in remission at week 4 and 2 of these patients (10%) achieved mucosal healing. Three patients (15%) required escalation of care. No serious adverse events were observed. Microbiome analysis revealed that restricted diversity of recipients pre-FMT was significantly increased by high-diversity 2-donor FMP. The microbiome of recipients post-transplant was more similar to the donor FMP than the pretransplant recipient sample in both responders and nonresponders. Notably, donor composition correlated with clinical response. Mucosal CD4 T-cell analysis revealed a reduction in both Th1 and regulatory T-cells post-FMT. CONCLUSIONS: High-diversity, 2-donor FMP delivery by colonoscopy seems safe and effective in increasing fecal microbial diversity in patients with active ulcerative colitis. Donor composition correlated with clinical response and further characterization of immunological parameters may provide insight into factors influencing clinical outcome.


Subject(s)
Colitis, Ulcerative/microbiology , Colitis, Ulcerative/therapy , Fecal Microbiota Transplantation/methods , Gastrointestinal Microbiome , Adult , Aged , CD4-Positive T-Lymphocytes/cytology , Colonoscopy , Feces/microbiology , Female , Humans , Male , Middle Aged , New York , Pilot Projects , Prospective Studies , RNA, Ribosomal, 16S/genetics , Rectum/pathology , Remission Induction , Treatment Outcome , Young Adult
19.
Mov Disord ; 31(5): 750-5, 2016 05.
Article in English | MEDLINE | ID: mdl-27093447

ABSTRACT

BACKGROUND: Up to 12% of patients with laryngeal dystonia report a familial history of dystonia, pointing to involvement of genetic factors. However, its genetic causes remain unknown. METHOD: Using Sanger sequencing, we screened 57 patients with isolated laryngeal dystonia for mutations in known dystonia genes TOR1A (DYT1), THAP1 (DYT6), TUBB4A (DYT4), and GNAL (DYT25). Using functional MRI, we explored the influence of the identified mutation on brain activation during symptomatic task production. RESULTS: We identified 1 patient with laryngeal dystonia who was a GNAL mutation carrier. When compared with 26 patients without known mutations, the GNAL carrier had increased activity in the fronto-parietal cortex and decreased activity in the cerebellum. CONCLUSIONS: Our data show that GNAL mutation may represent one of the rare causative genetic factors of isolated laryngeal dystonia. Exploratory evidence of distinct neural abnormalities in the GNAL carrier may suggest the presence of divergent pathophysiological cascades underlying this disorder. © 2016 International Parkinson and Movement Disorder Society.


Subject(s)
Cerebellum/physiopathology , Cerebral Cortex/physiopathology , Dysphonia/genetics , Dysphonia/physiopathology , GTP-Binding Protein alpha Subunits/genetics , Aged , Female , Humans , Male , Middle Aged , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...