Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38402621

ABSTRACT

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Subject(s)
Amino Acyl-tRNA Synthetases , Antifungal Agents , Animals , Mice , Antifungal Agents/pharmacology , Amino Acyl-tRNA Synthetases/genetics , Candida albicans , Structure-Activity Relationship
2.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38294218

ABSTRACT

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal
3.
Nature ; 618(7963): 102-109, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225985

ABSTRACT

Parasitic nematodes are a major threat to global food security, particularly as the world amasses 10 billion people amid limited arable land1-4. Most traditional nematicides have been banned owing to poor nematode selectivity, leaving farmers with inadequate means of pest control4-12. Here we use the model nematode Caenorhabditis elegans to identify a family of selective imidazothiazole nematicides, called selectivins, that undergo cytochrome-p450-mediated bioactivation in nematodes. At low parts-per-million concentrations, selectivins perform comparably well with commercial nematicides to control root infection by Meloidogyne incognita, a highly destructive plant-parasitic nematode. Tests against numerous phylogenetically diverse non-target systems demonstrate that selectivins are more nematode-selective than most marketed nematicides. Selectivins are first-in-class bioactivated nematode controls that provide efficacy and nematode selectivity.


Subject(s)
Antinematodal Agents , Tylenchoidea , Animals , Humans , Antinematodal Agents/chemistry , Antinematodal Agents/metabolism , Antinematodal Agents/pharmacology , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , Tylenchoidea/drug effects , Tylenchoidea/metabolism , Thiazoles/chemistry , Thiazoles/metabolism , Thiazoles/pharmacology , Cytochrome P-450 Enzyme System/drug effects , Plant Roots/drug effects , Plant Roots/parasitology , Plant Diseases , Species Specificity , Substrate Specificity
4.
mBio ; 13(6): e0273022, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36300931

ABSTRACT

Candida species are among the most prevalent causes of systemic fungal infection, posing a growing threat to public health. While Candida albicans is the most common etiological agent of systemic candidiasis, the frequency of infections caused by non-albicans Candida species is rising. Among these is Candida auris, which has emerged as a particular concern. Since its initial discovery in 2009, it has been identified worldwide and exhibits resistance to all three principal antifungal classes. Here, we endeavored to identify compounds with novel bioactivity against C. auris from the Medicines for Malaria Venture's Pathogen Box library. Of the five hits identified, the trisubstituted isoxazole MMV688766 emerged as the only compound displaying potent fungicidal activity against C. auris, as well as other evolutionarily divergent fungal pathogens. Chemogenomic profiling, as well as subsequent metabolomic and phenotypic analyses, revealed that MMV688766 disrupts cellular lipid homeostasis, driving a decrease in levels of early sphingolipid intermediates and fatty acids and a concomitant increase in lysophospholipids. Experimental evolution to further probe MMV688766's mode of action in the model fungus Saccharomyces cerevisiae revealed that loss of function of the transcriptional regulator HAL9 confers resistance to MMV688766, in part through the upregulation of the lipid-binding chaperone HSP12, a response that appears to assist in tolerating MMV688766-induced stress. The novel mode of action we have uncovered for MMV688766 against drug-resistant fungal pathogens highlights the broad utility of targeting lipid homeostasis to disrupt fungal growth and how screening structurally-diverse chemical libraries can provide new insights into resistance-conferring stress responses of fungi. IMPORTANCE As widespread antimicrobial resistance threatens to propel the world into a postantibiotic era, there is a pressing need to identify mechanistically distinct antimicrobial agents. This is of particular concern when considering the limited arsenal of drugs available to treat fungal infections, coupled with the emergence of highly drug-resistant fungal pathogens, including Candida auris. In this work, we demonstrate that existing libraries of drug-like chemical matter can be rich resources for antifungal molecular scaffolds. We discovered that the small molecule MMV688766, from the Pathogen Box library, displays previously undescribed broad-spectrum fungicidal activity through perturbation of lipid homeostasis. Characterization of the mode of action of MMV688766 provided new insight into the protective mechanisms fungi use to cope with the disruption of lipid homeostasis. Our findings highlight that elucidating the genetic circuitry required to survive in the presence of cellular stress offers powerful insights into the biological pathways that govern this important phenotype.


Subject(s)
Antifungal Agents , Isoxazoles , Antifungal Agents/pharmacology , Isoxazoles/metabolism , Candida , Saccharomyces cerevisiae , Homeostasis , Lipids , Microbial Sensitivity Tests
5.
ACS Chem Biol ; 17(6): 1343-1350, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35584803

ABSTRACT

With resistance to current agricultural fungicides rising, a great need has emerged for new antifungals with unexploited targets. In response, we report a novel series of diazaborines with potent activity against representative fungal plant pathogens. To identify their mode of action, we selected for resistant isolates using the model fungus Saccharomyces cerevisiae. Whole-genome sequencing of independent diazaborine-resistant lineages identified a recurring mutation in ERG25, which encodes a C-4 methyl sterol oxidase required for ergosterol biosynthesis in fungi. Haploinsufficiency and allele-swap experiments provided additional genetic evidence for Erg25 as the most biologically relevant target of our diazaborines. Confirming Erg25 as putative target, sterol profiling of compound-treated yeast revealed marked accumulation of the Erg25 substrate, 4,4-dimethylzymosterol and depletion of both its immediate product, zymosterol, as well as ergosterol. Encouraged by these mechanistic insights, the potential utility of targeting Erg25 with a diazaborine was demonstrated in soybean-rust and grape-rot models of fungal plant disease.


Subject(s)
Ergosterol , Mixed Function Oxygenases , Antifungal Agents/pharmacology , Mixed Function Oxygenases/genetics , Saccharomyces cerevisiae/genetics , Sterols
6.
Chem Rev ; 121(6): 3390-3411, 2021 03 24.
Article in English | MEDLINE | ID: mdl-32441527

ABSTRACT

Fungal infections are a major contributor to infectious disease-related deaths across the globe. Candida species are among the most common causes of invasive mycotic disease, with Candida albicans reigning as the leading cause of invasive candidiasis. Given that fungi are eukaryotes like their human host, the number of unique molecular targets that can be exploited for antifungal development remains limited. Currently, there are only three major classes of drugs approved for the treatment of invasive mycoses, and the efficacy of these agents is compromised by the development of drug resistance in pathogen populations. Notably, the emergence of additional drug-resistant species, such as Candida auris and Candida glabrata, further threatens the limited armamentarium of antifungals available to treat these serious infections. Here, we describe our current arsenal of antifungals and elaborate on the resistance mechanisms Candida species possess that render them recalcitrant to therapeutic intervention. Finally, we highlight some of the most promising therapeutic strategies that may help combat antifungal resistance, including combination therapy, targeting fungal-virulence traits, and modulating host immunity. Overall, a thorough understanding of the mechanistic principles governing antifungal drug resistance is fundamental for the development of novel therapeutics to combat current and emerging fungal threats.


Subject(s)
Antifungal Agents/chemistry , Candida albicans/drug effects , Mycoses/drug therapy , Animals , Antifungal Agents/pharmacology , Candida/drug effects , Candida glabrata/drug effects , Drug Development , Drug Resistance, Fungal , Drug Therapy, Combination , Humans , Molecular Structure , Signal Transduction , Virulence
7.
Cell Chem Biol ; 27(3): 269-282.e5, 2020 03 19.
Article in English | MEDLINE | ID: mdl-31924499

ABSTRACT

New strategies are urgently needed to counter the threat to human health posed by drug-resistant fungi. To explore an as-yet unexploited target space for antifungals, we screened a library of protein kinase inhibitors for the ability to reverse resistance of the most common human fungal pathogen, Candida albicans, to caspofungin, a widely used antifungal. This screen identified multiple 2,3-aryl-pyrazolopyridine scaffold compounds capable of restoring caspofungin sensitivity. Using chemical genomic, biochemical, and structural approaches, we established the target for our most potent compound as Yck2, a casein kinase 1 family member. Combination of this compound with caspofungin eradicated drug-resistant C. albicans infection while sparing co-cultured human cells. In mice, genetic depletion of YCK2 caused an ∼3-log10 decline in fungal burden in a model of systemic caspofungin-resistant C. albicans infection. Structural insights and our tool compound's profile in culture support targeting the Yck2 kinase function as a broadly active antifungal strategy.


Subject(s)
Candida albicans/drug effects , Candidiasis/drug therapy , Drug Resistance, Fungal/drug effects , Fungal Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Cells, Cultured , Echinocandins/chemistry , Echinocandins/pharmacology , Fungal Proteins/metabolism , Humans , Mice , Microbial Sensitivity Tests , Molecular Structure , Protein Kinase Inhibitors/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...