Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
BMC Med Genomics ; 15(1): 56, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35287663

ABSTRACT

BACKGROUND: Clinical use of genotype data requires high positive predictive value (PPV) and thorough understanding of the genotyping platform characteristics. BeadChip arrays, such as the Global Screening Array (GSA), potentially offer a high-throughput, low-cost clinical screen for known variants. We hypothesize that quality assessment and comparison to whole-genome sequence and benchmark data establish the analytical validity of GSA genotyping. METHODS: To test this hypothesis, we selected 263 samples from Coriell, generated GSA genotypes in triplicate, generated whole genome sequence (rWGS) genotypes, assessed the quality of each set of genotypes, and compared each set of genotypes to each other and to the 1000 Genomes Phase 3 (1KG) genotypes, a performance benchmark. For 59 genes (MAP59), we also performed theoretical and empirical evaluation of variants deemed medically actionable predispositions. RESULTS: Quality analyses detected sample contamination and increased assay failure along the chip margins. Comparison to benchmark data demonstrated that > 82% of the GSA assays had a PPV of 1. GSA assays targeting transitions, genomic regions of high complexity, and common variants performed better than those targeting transversions, regions of low complexity, and rare variants. Comparison of GSA data to rWGS and 1KG data showed > 99% performance across all measured parameters. Consistent with predictions from prior studies, the GSA detection of variation within the MAP59 genes was 3/261. CONCLUSION: We establish the analytical validity of GSA assays using quality analytics and comparison to benchmark and rWGS data. GSA assays meet the standards of a clinical screen although assays interrogating rare variants, transversions, and variants within low-complexity regions require careful evaluation.


Subject(s)
Benchmarking , High-Throughput Nucleotide Sequencing , Genome , Genotype , Polymorphism, Single Nucleotide
2.
J Genet Couns ; 30(2): 503-512, 2021 04.
Article in English | MEDLINE | ID: mdl-33029862

ABSTRACT

Genetic testing for cardiovascular disease (CVD) has advanced over the past ten years, but these advancements have posed new challenges in variant classification. To address these challenges, ACMG/AMP published guidelines for variant interpretation in 2015. This study aimed to determine what impact these guidelines have on variant classification in clinical cardiovascular genetics. A retrospective chart review identified patients who underwent clinical genetic testing and had a variant identified in a gene associated with CVD. For each variant, systematic evidence review was performed and ACMG guidelines were applied for classification. These classifications were compared to those provided on patients' genetic test reports. This study identified 223 unique variants in 237 patients. Seventy-nine (35%) of the variants had classifications that differed from their clinical reports. Twenty-eight (35%) of these reclassifications would have changed medical management recommendations for 38 patients. Application of these guidelines resulted in reclassification for approximately one-third of the variants in this study. Clinicians can have a more active role in the process of variant classification. Variant classifications should be updated over time in the clinical CVD setting due to the impact reclassifications can have on clinical screening recommendations.


Subject(s)
Cardiovascular Diseases , Genetic Variation , Cardiovascular Diseases/genetics , Genetic Testing , Humans , Retrospective Studies
3.
Eur J Med Genet ; 63(1): 103636, 2020 Jan.
Article in English | MEDLINE | ID: mdl-30836150

ABSTRACT

Copy number variations (CNVs) of the CNTN6 gene - a member of the contactin gene superfamily - have been previously proposed to have an association with neurodevelopmental and autism spectrum disorders. However, no functional evidence has been provided to date and phenotypically normal and mildly affected carriers complicate the interpretation of this aberration. In view of conflicting reports on the pathogenicity of CNVs involving CNTN6 and association with different phenotypes, we, independently, evaluated clinical features of nineteen patients with detected CNV of CNTN6 as part of their clinical microarray analysis at Children's Mercy and Nationwide Children's Hospitals for the period of 2008-2015. The clinical presentations of these patients were variable making it difficult to establish genotype-phenotype correlations. CNVs were inherited in six patients. For thirteen patients, inheritance pattern was not established due to unavailability of parental samples for testing. In three cases CNV was inherited from a healthy parent and in three cases from a parent with neurodevelopmental symptoms. Of the nineteen patients, four had a separate genetic abberation in addition to CNV of the CNTN6 that could independently explain their respective phenotypes. Separately, CNTN6 sequencing was performed on an autism spectrum disorder (ASD) research cohort of 94 children from 80 unrelated families. We found no difference in frequency of rare coding variants between the cohort of patients and controls. We conclude that CNVs involving CNTN6 alone seem to be most likely a neutral variant or a possible modifier rather than a disease-causing variant. Patients with CNVs encompassing CNTN6 could benefit from additional genetic testing since a clinical diagnosis due to a CNV of CNTN6 alone is still questionable.


Subject(s)
Contactins/genetics , Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Adolescent , Child , Female , Gene Dosage/genetics , Genetic Association Studies , Humans , Male , Microarray Analysis , Neurodevelopmental Disorders/diagnosis , Neurodevelopmental Disorders/pathology , Phenotype
4.
J Health Commun ; 24(4): 377-384, 2019.
Article in English | MEDLINE | ID: mdl-31060454

ABSTRACT

Refined estimates of risk based on genetic risk modifiers could assist BRCA mutation carriers in understanding their risk, but it is not clear whether carriers are interested in receiving these estimates or how they might benefit from them. Using qualitative interviews, we investigated female BRCA1 and BRCA2 mutation carriers' (N = 20) reactions to numerical and verbal presentations of breast cancer risk based on risk modifiers and assessed women's preferences regarding visual formats for communicating risk. Our results show carriers are interested in receiving refined risk estimates and suggest the estimates may influence decision-making regarding cancer prevention, depending on the nature of the risk assessment. Although accurate and precise estimates of breast cancer risk are most important to women, they preferred quantitative risk estimates expressed as a proportion with or without a population comparison; however, women noted that comparisons to other BRCA mutation carriers were less useful given their high risk. Participants also preferred communication of a risk as a specific percentage versus a range of risk, but a clear preference regarding visual displays was not expressed. Results support many existing recommendations for genetic risk communication and provide guidance for the development of tools incorporating genetic risk modifiers.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/psychology , Communication , Decision Making , Genetic Predisposition to Disease , Risk Assessment/methods , Adult , BRCA1 Protein , Female , Genes, BRCA1 , Genes, BRCA2 , Humans , Interviews as Topic , Middle Aged
5.
Am J Med Genet A ; 173(4): 1056-1060, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28328127

ABSTRACT

Intrachromosomal triplications are complex chromosomal rearrangements which arise during meiosis or mitosis and lead to a tetrasomic dose of the affected genomic regions. We describe a female patient harboring an intrachromosomal triplication who presented to the Genetics clinic with dysmorphic features, including telecanthus, flat facial profile, and prognathism, short stature, widely spaced nipples, multiple allergy complaints, loose bowel movements, and mild speech delay. Microarray analysis showed a copy number gain of a 22.37 Mb region of chromosome 11 between bands 11q14.1 and 11q22.1. This region contains 95 genes and seven microRNAs, none of which have been implicated in a disease resulting from increased gene dosage. FISH analysis using a probe targeted to the middle of the segment of the copy number gain yielded a pattern indicative of a tetrasomy via an intrachromosomal triplication, with three signals on the long arm of one homologue of chromosome 11 and the fourth on the other homologue. Subsequent FISH analysis showed that the middle triplicated fragment was positioned in an inverted orientation relative to the outer fragments. To investigate the mechanism by which the intrachromosomal triplication occurred, SNP microarray analysis was performed. These results were consistent with the presence of multiple haplotypes in the tetrasomic region and suggest that the intrachromosomal triplication in our patient arose in one parent during meiosis. © 2017 Wiley Periodicals, Inc.


Subject(s)
Abnormalities, Multiple/genetics , Chromosomes, Human, Pair 11/chemistry , Craniofacial Abnormalities/genetics , Intellectual Disability/genetics , Prognathism/genetics , Tetrasomy , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/pathology , Child , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/pathology , Female , Gene Dosage , Humans , In Situ Hybridization, Fluorescence , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Karyotyping , Microarray Analysis , Oligonucleotide Array Sequence Analysis , Prognathism/diagnosis , Prognathism/pathology
6.
Mol Genet Genomic Med ; 3(2): 99-110, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25802880

ABSTRACT

Current practice by clinical diagnostic laboratories is to utilize online prediction programs to help determine the significance of novel variants in a given gene sequence. However, these programs vary widely in their methods and ability to correctly predict the pathogenicity of a given sequence change. The performance of 17 publicly available pathogenicity prediction programs was assayed using a dataset consisting of 122 credibly pathogenic and benign variants in genes associated with the RASopathy family of disorders and limb-girdle muscular dystrophy. Performance metrics were compared between the programs to determine the most accurate program for loss-of-function and gain-of-function mechanisms. No one program correctly predicted the pathogenicity of all variants analyzed. A major hindrance to the analysis was the lack of output from a significant portion of the programs. The best performer was MutPred, which had a weighted accuracy of 82.6% in the full dataset. Surprisingly, combining the results of the top three programs did not increase the ability to predict pathogenicity over the top performer alone. As the increasing number of sequence changes in larger datasets will require interpretation, the current study demonstrates that extreme caution must be taken when reporting pathogenicity based on statistical online protein prediction programs in the absence of functional studies.

7.
Pediatr Dev Pathol ; 18(1): 59-65, 2015.
Article in English | MEDLINE | ID: mdl-25299246

ABSTRACT

This case describes the autopsy findings of a 2-month-old male infant with extensive and severe developmental brain abnormalities, including microcephaly, neocortical neuronal layering abnormalities, leptomeningeal heterotopias, commissural agenesis, and cerebellar and brainstem hypoplasia. Microarray analysis identified a gain in chromosome band 6q27, which includes the entire coding region of THBS2. THSB2 encodes thrombospondin 2 (TSP2), an astrocyte secreted protein of the extracellular matrix that promotes synaptogenesis, neurite outgrowth, and cerebellar granule cell migration. Thrombospondin 2 is not a matrix structural protein; instead it serves as an extracellular modulator of cell function, so it is considered a matricellular protein. The neuropathological findings at autopsy are compatible with perturbations in several known functions of TSP2 and demonstrate that TSP2 dysregulation can have a significant negative impact on human brain development. Furthermore, this case demonstrates the important role of astrocytes in human brain development.


Subject(s)
Astrocytes/cytology , Brain/abnormalities , Chromosome Duplication , Chromosomes, Human, Pair 6/ultrastructure , Extracellular Matrix/metabolism , Thrombospondins/genetics , Autopsy , Axons/metabolism , Brain/embryology , Brain/metabolism , Cell Movement , Comparative Genomic Hybridization , Female , Gene Expression Regulation , Humans , Infant, Newborn , Male , Neurons/metabolism , Oligonucleotide Array Sequence Analysis , Young Adult
8.
Eur J Med Genet ; 57(7): 315-8, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24821304

ABSTRACT

Campomelic dysplasia (CD) is a skeletal dysplasia characterized by Pierre Robin sequence (PRS), shortened and bowed long bones, airway instability, and the potential for sex reversal. A subtype of CD, acampomelic CD (ACD), is seen in approximately 10% of cases and preserves long bone straightness. Both syndromes are caused by alterations in SOX9, with translocations and missense mutations being overrepresented in ACD cases. We report a term infant with PRS, severe cervical spine abnormalities, eleven rib pairs, hypoplastic scapulae, and female genitalia. Chromosome analysis identified a 46,XY,t(6;17)(q25;q24) karyotype. FISH analysis with a series of BAC probes localized the translocation breakpoints to 6q27 and a region at 17q24.3 in the range of 459-379 kb upstream of SOX9. Therefore, this case extends the region classified as the proximal breakpoint cluster. In addition, the comorbidity of acampomelia, complete sex reversal, and severe spinal anomalies in our patient underscores the variability in the level of malformation in the CD/ACD family of disorders.


Subject(s)
Campomelic Dysplasia/genetics , Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 6/genetics , SOX9 Transcription Factor/genetics , Chromosome Breakpoints , Female , Humans , Infant , Translocation, Genetic
9.
Eur J Hum Genet ; 22(1): 57-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23632792

ABSTRACT

Copy number variations associated with abnormal gene dosage have an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID) and autism. We hypothesize that the chromosome 2q23.1 region encompassing MBD5 is a dosage-dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes ID, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 68 kb to 53.7 Mb, encompassing a region that includes MBD5, an important factor in methylation patterning and epigenetic regulation. We previously reported that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. In this study, we demonstrate that MBD5 is the only gene in common among all duplication cases and that overexpression of MBD5 is likely responsible for the core clinical features present in 2q23.1 microduplication syndrome. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage-sensitive gene critical for normal development.


Subject(s)
Child Development Disorders, Pervasive/genetics , DNA-Binding Proteins/genetics , Developmental Disabilities/genetics , Trisomy/genetics , Adolescent , Child , Child Development Disorders, Pervasive/etiology , Child Development Disorders, Pervasive/pathology , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 2/genetics , Comparative Genomic Hybridization , Developmental Disabilities/etiology , Developmental Disabilities/pathology , Epigenesis, Genetic , Female , Gene Dosage , Humans , Infant , Male
10.
Forensic Sci Int Genet ; 7(5): 475-81, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23948316

ABSTRACT

Short tandem repeat (STR) loci are commonly used in forensic casework, familial analysis for human identification, and for monitoring hematopoietic cell engraftment after bone marrow transplant. Unexpected genetic variation leading to sequence and length differences in STR loci can complicate STR typing, and presents challenges in casework interpretation. Copy number variation (CNV) is a relatively recently identified form of genetic variation consisting of genomic regions present at variable copy numbers within an individual compared to a reference genome. Large scale population studies have demonstrated that likely all individuals carry multiple regions with CNV of 1kb in size or greater in their genome. To date, no study correlating genomic regions containing STR loci with CNV has been conducted. In this study, we analyzed results from 32,850 samples sent for clinical array comparative genomic hybridization (CGH) analysis for the presence of CNV at regions containing the 13 CODIS (Combined DNA Index System) STR, and the Amelogenin X (AMELX) and Amelogenin Y (AMELY) loci. Thirty-two individuals with CNV involving STR loci on chromosomes 2, 4, 7, 11, 12, 13, 16, and 21, and twelve with CNV involving the AMELX/AMELY loci were identified. These results were correlated with data from publicly available databases housing information on CNV identified in normal populations and additional clinical cases. These collective results demonstrate the presence of CNV in regions containing 9 of the 13 CODIS STR and AMELX/Y loci. Further characterization of STR profiles within regions of CNV, additional cataloging of these variants in multiple populations, and contributing such examples to the public domain will provide valuable information for reliable use of these loci.


Subject(s)
Amelogenin/genetics , DNA Copy Number Variations , Microsatellite Repeats , Bone Marrow Transplantation , Comparative Genomic Hybridization/methods , Female , Forensic Genetics , Genome, Human , Humans , In Situ Hybridization, Fluorescence , Male , Paternity
11.
Eur J Med Genet ; 56(9): 521-5, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23895773

ABSTRACT

Deletions of the long arm of chromosome 4 are rare but have been previously reported to be associated with craniofacial anomalies, digital anomalies, developmental delay, growth failure, and cardiovascular anomalies. Strehle et al. previously presented 20 patients with 4q deletions and began to construct a phenotype-genotype map for chromosome 4q. This report follows up on that work by providing clinical and molecular cytogenetic data on a three generation pedigree including seven patients with short stature, dysmorphic features, and developmental delay identified to have a 4q27-q28.1 microdeletion of approximately 5.68 Mb by oligonucleotide chromosomal microarray. This family represents a rare report of an inherited interstitial deletion of the long arm of chromosome 4. To our knowledge, only two cases have been previously reported. The contribution of candidate genes in the region is discussed.


Subject(s)
Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 4/genetics , Developmental Disabilities/genetics , Growth Disorders/genetics , Pedigree , Abnormalities, Multiple/diagnosis , Adult , Child , Developmental Disabilities/diagnosis , Female , Growth Disorders/diagnosis , Humans , Infant, Newborn , Male , Syndrome
12.
Am J Hum Genet ; 92(2): 210-20, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23332918

ABSTRACT

Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype including ID, autism, short stature, microcephaly, cerebral palsy, and facial dysmorphisms. The dysmorphic features were more pronounced in persons with 3'AUTS2 deletions. This part of the gene is shown to encode a C-terminal isoform (with an alternative transcription start site) expressed in the human brain. Consistent with our genetic data, suppression of auts2 in zebrafish embryos caused microcephaly that could be rescued by either the full-length or the C-terminal isoform of AUTS2. Our observations demonstrate a causal role of AUTS2 in neurocognitive disorders, establish a hitherto unappreciated syndromic phenotype at this locus, and show how transcriptional complexity can underpin human pathology. The zebrafish model provides a valuable tool for investigating the etiology of AUTS2 syndrome and facilitating gene-function analysis in the future.


Subject(s)
Exons/genetics , Genetic Predisposition to Disease , Intellectual Disability/genetics , Proteins/chemistry , Proteins/genetics , Sequence Deletion/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Base Sequence , Child , Child, Preschool , Cytoskeletal Proteins , Facies , Female , Humans , Infant , Male , Molecular Sequence Data , Phenotype , Protein Isoforms/chemistry , Protein Isoforms/genetics , Suppression, Genetic , Syndrome , Transcription Factors , Young Adult , Zebrafish/embryology , Zebrafish/genetics , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
13.
Am J Med Genet A ; 158A(11): 2925-30, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22987822

ABSTRACT

The 12q14 microdeletion syndrome is a rare condition that has previously been characterized by pre- and postnatal growth restriction, proportionate short stature, failure to thrive, developmental delay, and osteopoikilosis. Previously reported microdeletions within this region have ranged in size from 1.83 to 10.12 Mb with a proposed 2.61 Mb smallest region of overlap containing the LEMD3, HMGA2, and GRIP1 genes. Here, we report on the identification of a 12q14 microdeletion in a female child presenting with proportionate short stature, failure to thrive, and speech delay. The genomic loss (minimum size 4.17 Mb, maximum size 4.21 Mb) contained 25 RefSeq genes including IRAK3, GRIP1, and the 3' portion of the HMGA2 gene. This is the first partial deletion of HMGA2 associated with the 12q14 microdeletion syndrome. This case further clarifies the association of LEMD3 deletions with the 12q14 microdeletion syndrome and provides additional support for the role of the HMGA2 gene in human growth.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 12 , Dwarfism/genetics , HMGA2 Protein/genetics , Child , Comparative Genomic Hybridization , Dwarfism/diagnosis , Female , Humans , Syndrome
14.
Am J Med Genet A ; 158A(8): 1924-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22786685

ABSTRACT

The presence of more than one cell line in an individual may often be missed by classical cytogenetic analysis due to a low percentage of affected cells or analysis of cells from an unaffected or less affected germ layer. Array comparative genomic hybridization (aCGH) from whole blood or tissue is an important adjunct to standard karyotyping due to its ability to detect genomic imbalances that are below the resolution of karyotype analysis. We report results from three unrelated patients in whom aCGH revealed mosaicism not identified by peripheral blood chromosome analysis. This study further illustrates the important application of aCGH in detecting tissue-specific mosaicism, thereby leading to an improvement in the ability to provide a diagnosis for patients with normal chromosome analysis and dysmorphic features, congenital anomalies, and/or developmental delay.


Subject(s)
Comparative Genomic Hybridization , Mosaicism , Oligonucleotide Array Sequence Analysis , Adolescent , Adult , Female , Humans , In Situ Hybridization, Fluorescence , Infant, Newborn , Male
15.
Clin Lab Med ; 31(4): 565-80, viii, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22118737

ABSTRACT

Many copy number alterations (CNA) currently interpreted as variants of unknown significance (VUS) will ultimately be determined to be benign; however, their classification requires a more extensive characterization of the human genome than currently exists. There is no definitive set of rules or level of evidence required to define a CNA as benign. The information needed to accurately assess the pathogenic impact of CNA is beginning to be assembled. Although the lack of understanding of the human genome can make clinical array-comparative genomic hybridization interpretation frustrating, it is precisely why clinical human genetics is an exciting arena in which to work.


Subject(s)
Comparative Genomic Hybridization , DNA Copy Number Variations , Oligonucleotide Array Sequence Analysis , Chromosome Aberrations , Chromosome Disorders , Cytogenetic Analysis , Gene Deletion , Gene Duplication , Humans , Phenotype
16.
Am J Hum Genet ; 89(4): 551-63, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21981781

ABSTRACT

Persons with neurodevelopmental disorders or autism spectrum disorder (ASD) often harbor chromosomal microdeletions, yet the individual genetic contributors within these regions have not been systematically evaluated. We established a consortium of clinical diagnostic and research laboratories to accumulate a large cohort with genetic alterations of chromosomal region 2q23.1 and acquired 65 subjects with microdeletion or translocation. We sequenced translocation breakpoints; aligned microdeletions to determine the critical region; assessed effects on mRNA expression; and examined medical records, photos, and clinical evaluations. We identified a single gene, methyl-CpG-binding domain 5 (MBD5), as the only locus that defined the critical region. Partial or complete deletion of MBD5 was associated with haploinsufficiency of mRNA expression, intellectual disability, epilepsy, and autistic features. Fourteen alterations, including partial deletions of noncoding regions not typically captured or considered pathogenic by current diagnostic screening, disrupted MBD5 alone. Expression profiles and clinical characteristics were largely indistinguishable between MBD5-specific alteration and deletion of the entire 2q23.1 interval. No copy-number alterations of MBD5 were observed in 7878 controls, suggesting MBD5 alterations are highly penetrant. We surveyed MBD5 coding variations among 747 ASD subjects compared to 2043 non-ASD subjects analyzed by whole-exome sequencing and detected an association with a highly conserved methyl-CpG-binding domain missense variant, p.79Gly>Glu (c.236G>A) (p = 0.012). These results suggest that genetic alterations of MBD5 cause features of 2q23.1 microdeletion syndrome and that this epigenetic regulator significantly contributes to ASD risk, warranting further consideration in research and clinical diagnostic screening and highlighting the importance of chromatin remodeling in the etiology of these complex disorders.


Subject(s)
Child Development Disorders, Pervasive/genetics , Chromosomes, Human, Pair 2 , DNA-Binding Proteins/genetics , Epilepsy/genetics , Gene Deletion , Intellectual Disability/genetics , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , CpG Islands , Epigenesis, Genetic , Female , Humans , Male , Phenotype , Syndrome
17.
J Mol Diagn ; 13(2): 167-74, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21354051

ABSTRACT

Duchenne and Becker muscular dystrophies (DMD/BMD) are allelic X-linked recessive disorders that affect approximately 1 in 3500 and 1 in 20,000 male individuals, respectively. Approximately 65% of patients with DMD have deletions, 7% to 10% have duplications, and 25% to 30% have point mutations in one or more of the 79 exons of the dystrophin gene. Most clinical genetics laboratories test for deletions, and some use technologies that can detect smaller mutations and duplications. Reference and quality control materials for DMD/BMD diagnostic and carrier genetic testing are not commercially available. To help address this need, the Centers for Disease Control and Prevention-based Genetic Testing Reference Material Coordination Program, in collaboration with members of the genetic testing and the DMD/BMD patient communities and the Coriell Cell Repositories, have characterized new and existing cell lines to create a comprehensive DMD/BMD reference material panel. Samples from 31 Coriell DMD cell lines from male probands and female carriers were analyzed using the Affymetrix SNP Array 6.0 and Multiplex Ligation-Dependent Probe Amplification (MRC-Holland BV, Amsterdam, the Netherlands), a multiplex PCR assay, and DNA sequence analysis. Identified were 16 cell lines with deletions, 9 with duplications, and 4 with point mutations distributed throughout the dystrophin gene. There were no discordant results within assay limitations. These samples are publicly available from Coriell Institute for Medical Research (Camden, NJ) and can be used for quality assurance, proficiency testing, test development, and research, and should help improve the accuracy of DMD testing.


Subject(s)
Genetic Testing/standards , Muscular Dystrophy, Duchenne/genetics , Mutation , Quality Control , Carrier State , Cell Line , Female , Humans , Male , Microarray Analysis/methods , Microarray Analysis/standards , Muscular Dystrophy, Duchenne/diagnosis , Polymerase Chain Reaction/methods , Polymorphism, Single Nucleotide , Reference Standards , Sequence Analysis, DNA/methods
18.
Am J Med Genet A ; 152A(7): 1608-16, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20578137

ABSTRACT

Spinal muscular atrophy (SMA) is a common autosomal recessive neuromuscular disorder caused by mutations in the survival motor neuron (SMN1) gene, affecting approximately 1 in 10,000 live births. The homozygous absence of SMN1 exon 7 has been observed in the majority of patients and is being utilized as a reliable and sensitive SMA diagnostic test. Treatment and prevention of SMA are complementary responses to the challenges presented by SMA. Even though a specific therapy for SMA is not currently available, a newborn screening test may allow the child to be enrolled in a clinical trial before irreversible neuronal loss occurs and enable patients to obtain more proactive treatments. Until an effective treatment is found to cure or arrest the progression of the disease, prevention of new cases through accurate diagnosis and carrier and prenatal diagnosis is of the utmost importance. The goal of population-based SMA carrier screening is to identify couples at risk for having a child with SMA, thus allowing carriers to make informed reproductive choices. During this study we performed two pilot projects addressing the clinical applicability of testing in the newborn period and carrier screening in the general population. We have demonstrated that an effective technology does exist for newborn screening of SMA. We also provide an estimate of the carrier frequency among individuals who accepted carrier screening, and report on patient's knowledge and attitudes toward SMA testing.


Subject(s)
Heterozygote , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/genetics , Neonatal Screening , Fluorescence , Genotype , Health Surveys , Humans , Infant, Newborn , Survival of Motor Neuron 1 Protein/genetics
19.
Am J Hum Genet ; 86(3): 454-61, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20206336

ABSTRACT

Segmental duplications, which comprise approximately 5%-10% of the human genome, are known to mediate medically relevant deletions, duplications, and inversions through nonallelic homologous recombination (NAHR) and have been suggested to be hot spots in chromosome evolution and human genomic instability. We report seven individuals with microdeletions at 17q23.1q23.2, identified by microarray-based comparative genomic hybridization (aCGH). Six of the seven deletions are approximately 2.2 Mb in size and flanked by large segmental duplications of >98% sequence identity and in the same orientation. One of the deletions is approximately 2.8 Mb in size and is flanked on the distal side by a segmental duplication, whereas the proximal breakpoint falls between segmental duplications. These characteristics suggest that NAHR mediated six out of seven of these rearrangements. These individuals have common features, including mild to moderate developmental delay (particularly speech delay), microcephaly, postnatal growth retardation, heart defects, and hand, foot, and limb abnormalities. Although all individuals had at least mild dysmorphic facial features, there was no characteristic constellation of features that would elicit clinical suspicion of a specific disorder. The identification of common clinical features suggests that microdeletions at 17q23.1q23.2 constitute a novel syndrome. Furthermore, the inclusion in the minimal deletion region of TBX2 and TBX4, transcription factors belonging to a family of genes implicated in a variety of developmental pathways including those of heart and limb, suggests that these genes may play an important role in the phenotype of this emerging syndrome.


Subject(s)
Chromosome Deletion , Chromosomes, Human, Pair 17/genetics , Heart Defects, Congenital/genetics , Limb Deformities, Congenital/genetics , Segmental Duplications, Genomic , Adolescent , Child, Preschool , Comparative Genomic Hybridization , Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Oligonucleotide Array Sequence Analysis , Phenotype , Recombination, Genetic , Syndrome , T-Box Domain Proteins/genetics
20.
Clin Chem ; 53(11): 1879-85, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17890438

ABSTRACT

BACKGROUND: Spinal muscular atrophy is a common neurodegenerative disorder that has recently been considered for inclusion in the next generation of newborn screening regimens. We sought to validate liquid microbead arrays for the identification of affected individuals by direct DNA analysis. METHODS: Assays were created to detect the homozygous deletions in exon 7 of the SMN1 gene found in approximately 95% of affected individuals by use of 2 different microbead chemistries on the Luminex 200: MultiCode-PLx and Tag-It. A series of 367 blood spots including 164 from affected individuals, 46 from known carriers, and 157 from unaffected individuals were then analyzed with each assay. RESULTS: The MultiCode-PLx assay required 4.2 h to perform and provided correct identification of all 164 samples from affected individuals. Correct exclusion was also made for all 46 carrier and 157 unaffected individual samples. The Tag-It assay required 6.8 h, detected all samples from affected individuals, and excluded all but 1 (99.5%) of the samples from carriers and unaffected individuals. Neither method was sensitive to increasing copy numbers of the SMN2 gene. CONCLUSIONS: Both methods showed high sensitivity and specificity for the detection of patients with spinal muscular atrophy. For both methods, ample DNA was extracted from all blood spots for analysis, and SMN2 copy numbers did not interfere. Liquid bead arrays represent a robust method for DNA analysis in newborn screening laboratories.


Subject(s)
Cyclic AMP Response Element-Binding Protein/genetics , Neonatal Screening/methods , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Spinal Muscular Atrophies of Childhood/diagnosis , Cluster Analysis , DNA/blood , Gene Deletion , Gene Dosage , Heterozygote , Homozygote , Humans , Infant, Newborn , Microspheres , SMN Complex Proteins , Sensitivity and Specificity , Spinal Muscular Atrophies of Childhood/genetics , Survival of Motor Neuron 1 Protein , Survival of Motor Neuron 2 Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...