Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Biol ; 431(10): 1956-1965, 2019 05 03.
Article in English | MEDLINE | ID: mdl-30954575

ABSTRACT

Helicobacter pylori colonizes the human stomach and contributes to the development of gastric cancer and peptic ulcer disease. H. pylori secretes a pore-forming toxin called vacuolating cytotoxin A (VacA), which contains two domains (p33 and p55) and assembles into oligomeric structures. Using single-particle cryo-electron microscopy, we have determined low-resolution structures of a VacA dodecamer and heptamer, as well as a 3.8-Å structure of the VacA hexamer. These analyses show that VacA p88 consists predominantly of a right-handed beta-helix that extends from the p55 domain into the p33 domain. We map the regions of p33 and p55 involved in hexamer assembly, model how interactions between protomers support heptamer formation, and identify surfaces of VacA that likely contact membrane. This work provides structural insights into the process of VacA oligomerization and identifies regions of VacA protomers that are predicted to contact the host cell surface during channel formation.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/ultrastructure , Helicobacter pylori/chemistry , Cryoelectron Microscopy/methods , Helicobacter Infections/microbiology , Helicobacter pylori/ultrastructure , Humans , Models, Molecular , Protein Conformation , Protein Multimerization
2.
Protein Sci ; 26(1): 69-81, 2017 01.
Article in English | MEDLINE | ID: mdl-27673321

ABSTRACT

Single-particle cryo-electron microscopy (EM) is currently gaining attention for the ability to calculate structures that reach sub-5 Å resolutions; however, the technique is more than just an alternative approach to X-ray crystallography. Molecular machines work via dynamic conformational changes, making structural flexibility the hallmark of function. While the dynamic regions in molecules are essential, they are also the most challenging to structurally characterize. Single-particle EM has the distinct advantage of being able to directly visualize purified molecules without the formation of ordered arrays of molecules locked into identical conformations. Additionally, structures determined using single-particle EM can span resolution ranges from very low- to atomic-levels (>30-1.8 Å), sometimes even in the same structure. The ability to accommodate various resolutions gives single-particle EM the unique capacity to structurally characterize dynamic regions of biological molecules, thereby contributing essential structural information needed for the development of molecular models that explain function. Further, many important molecular machines are intrinsically dynamic and compositionally heterogeneous. Structures of these complexes may never reach sub-5 Å resolutions due to this flexibility required for function. Thus, the biochemical quality of the sample, as well as, the calculation and interpretation of low- to mid-resolution cryo-EM structures (30-8 Å) remains critical for generating insights into the architecture of many challenging biological samples that cannot be visualized using alternative techniques.


Subject(s)
Cryoelectron Microscopy/methods , Models, Molecular , Crystallography, X-Ray/methods
3.
Infect Immun ; 84(9): 2662-70, 2016 09.
Article in English | MEDLINE | ID: mdl-27382020

ABSTRACT

Helicobacter pylori secretes a pore-forming VacA toxin that has structural features and activities substantially different from those of other known bacterial toxins. VacA can assemble into multiple types of water-soluble flower-shaped oligomeric structures, and most VacA activities are dependent on its capacity to oligomerize. The 88-kDa secreted VacA protein can undergo limited proteolysis to yield two domains, designated p33 and p55. The p33 domain is required for membrane channel formation and intracellular toxic activities, and the p55 domain has an important role in mediating VacA binding to cells. Previous studies showed that the p55 domain has a predominantly ß-helical structure, but no structural data are available for the p33 domain. We report here the purification and analysis of a nonoligomerizing mutant form of VacA secreted by H. pylori The nonoligomerizing 88-kDa mutant protein retains the capacity to enter host cells but lacks detectable toxic activity. Analysis of crystals formed by the monomeric protein reveals that the ß-helical structure of the p55 domain extends into the C-terminal portion of p33. Fitting the p88 structural model into an electron microscopy map of hexamers formed by wild-type VacA (predicted to be structurally similar to VacA membrane channels) reveals that p55 and the ß-helical segment of p33 localize to peripheral arms but do not occupy the central region of the hexamers. We propose that the amino-terminal portion of p33 is unstructured when VacA is in a monomeric form and that it undergoes a conformational change during oligomer assembly.


Subject(s)
Bacterial Proteins/genetics , Bacterial Toxins/genetics , Helicobacter pylori/genetics , Mutation/genetics , Protein Domains/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Line, Tumor , HeLa Cells , Helicobacter pylori/metabolism , Humans , Ion Channels/genetics , Ion Channels/metabolism , Microscopy, Electron/methods
4.
Mol Microbiol ; 102(1): 22-36, 2016 10.
Article in English | MEDLINE | ID: mdl-27309820

ABSTRACT

Helicobacter pylori colonizes the human stomach and is a potential cause of peptic ulceration or gastric adenocarcinoma. H. pylori secretes a pore-forming toxin known as vacuolating cytotoxin A (VacA). The 88 kDa secreted VacA protein, composed of an N-terminal p33 domain and a C-terminal p55 domain, assembles into water-soluble oligomers. The structural organization of membrane-bound VacA has not been characterized in any detail and the role(s) of specific VacA domains in membrane binding and insertion are unclear. We show that membrane-bound VacA organizes into hexameric oligomers. Comparison of the two-dimensional averages of membrane-bound and soluble VacA hexamers generated using single particle electron microscopy reveals a structural difference in the central region of the oligomers (corresponding to the p33 domain), suggesting that membrane association triggers a structural change in the p33 domain. Analyses of the isolated p55 domain and VacA variants demonstrate that while the p55 domain can bind membranes, the p33 domain is required for membrane insertion. Surprisingly, neither VacA oligomerization nor the presence of putative transmembrane GXXXG repeats in the p33 domain is required for membrane insertion. These findings provide new insights into the process by which VacA binds and inserts into the lipid bilayer to form membrane channels.


Subject(s)
Bacterial Proteins/metabolism , Helicobacter pylori/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Cytotoxins/metabolism , HeLa Cells , Helicobacter pylori/genetics , Humans , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/metabolism , Protein Conformation , Protein Domains , Structure-Activity Relationship , Vacuoles/metabolism
5.
mBio ; 7(1): e02001-15, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26758182

ABSTRACT

UNLABELLED: Bacterial type IV secretion systems (T4SSs) can function to export or import DNA, and can deliver effector proteins into a wide range of target cells. Relatively little is known about the structural organization of T4SSs that secrete effector proteins. In this report, we describe the isolation and analysis of a membrane-spanning core complex from the Helicobacter pylori cag T4SS, which has an important role in the pathogenesis of gastric cancer. We show that this complex contains five H. pylori proteins, CagM, CagT, Cag3, CagX, and CagY, each of which is required for cag T4SS activity. CagX and CagY are orthologous to the VirB9 and VirB10 components of T4SSs in other bacterial species, and the other three Cag proteins are unique to H. pylori. Negative stain single-particle electron microscopy revealed complexes 41 nm in diameter, characterized by a 19-nm-diameter central ring linked to an outer ring by spoke-like linkers. Incomplete complexes formed by Δcag3 or ΔcagT mutants retain the 19-nm-diameter ring but lack an organized outer ring. Immunogold labeling studies confirm that Cag3 is a peripheral component of the complex. The cag T4SS core complex has an overall diameter and structural organization that differ considerably from the corresponding features of conjugative T4SSs. These results highlight specialized features of the H. pylori cag T4SS that are optimized for function in the human gastric mucosal environment. IMPORTANCE: Type IV secretion systems (T4SSs) are versatile macromolecular machines that are present in many bacterial species. In this study, we investigated a T4SS found in the bacterium Helicobacter pylori. H. pylori is an important cause of stomach cancer, and the H. pylori T4SS contributes to cancer pathogenesis by mediating entry of CagA (an effector protein regarded as a "bacterial oncoprotein") into gastric epithelial cells. We isolated and analyzed the membrane-spanning core complex of the H. pylori T4SS and showed that it contains unique proteins unrelated to components of T4SSs in other bacterial species. These results constitute the first structural analysis of the core complex from this important secretion system.


Subject(s)
Helicobacter pylori/chemistry , Helicobacter pylori/genetics , Macromolecular Substances/ultrastructure , Type IV Secretion Systems/genetics , Type IV Secretion Systems/ultrastructure , Humans , Immunohistochemistry , Microscopy, Electron
6.
J Mol Biol ; 425(3): 524-35, 2013 Feb 08.
Article in English | MEDLINE | ID: mdl-23178866

ABSTRACT

Helicobacter pylori is a Gram-negative bacterium that colonizes the human stomach and contributes to peptic ulceration and gastric adenocarcinoma. H. pylori secretes a pore-forming exotoxin known as vacuolating toxin (VacA). VacA contains two distinct domains, designated p33 and p55, and assembles into large "snowflake"-shaped oligomers. Thus far, no structural data are available for the p33 domain, which is essential for membrane channel formation. Using single-particle electron microscopy and the random conical tilt approach, we have determined the three-dimensional structures of six VacA oligomeric conformations at ~15-Å resolution. The p55 domain, composed primarily of ß-helical structures, localizes to the peripheral arms, while the p33 domain consists of two globular densities that localize within the center of the complexes. By fitting the VacA p55 crystal structure into the electron microscopy densities, we have mapped inter-VacA interactions that support oligomerization. In addition, we have examined VacA variants/mutants that differ from wild-type (WT) VacA in toxin activity and/or oligomeric structural features. Oligomers formed by VacA∆6-27, a mutant that fails to form membrane channels, lack an organized p33 central core. Mixed oligomers containing both WT and VacA∆6-27 subunits also lack an organized core. Oligomers formed by a VacA s2m1 chimera (which lacks cell-vacuolating activity) and VacAΔ301-328 (which retains vacuolating activity) each contain p33 central cores similar to those of WT oligomers. By providing the most detailed view of the VacA structure to date, these data offer new insights into the toxin's channel-forming component and the intermolecular interactions that underlie oligomeric assembly.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Protein Multimerization , Microscopy, Electron/methods , Models, Molecular , Protein Interaction Mapping
7.
PLoS Pathog ; 7(7): e1002112, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21765814

ABSTRACT

GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIbα. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB(BR)), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB(BR) structure revealed that it is comprised of three independently folded subdomains or modules: 1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; 2) a second Ig-fold resembling the binding region of mammalian Siglecs; 3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIbα. Further examination of purified GspB(BR)-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspB(BR). This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.


Subject(s)
Adhesins, Bacterial/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Serine/metabolism , Streptococcus gordonii/genetics , Adhesins, Bacterial/metabolism , Animals , Binding Sites , Blood Platelets/metabolism , Endocarditis, Bacterial/metabolism , Endocarditis, Bacterial/microbiology , Female , Humans , Lectins/metabolism , Microscopy, Fluorescence , Mucins/metabolism , Mutagenesis, Site-Directed , Platelet Glycoprotein GPIb-IX Complex/metabolism , Point Mutation , Protein Binding , Protein Structure, Secondary , Rats , Rats, Sprague-Dawley , Sequence Analysis, DNA , Sialic Acid Binding Immunoglobulin-like Lectins
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 11): 1503-7, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-21045307

ABSTRACT

The carbohydrate-binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspB(BR)) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspB(BR) buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspB(BR) in each buffer. While both sets of conditions supported crystal growth in space group P2(1)2(1)2(1), the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 Šfor crystal form 1 and a = 34.6, b = 98.3, c = 99.0 Šfor crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 Šresolution. A complete data set has been collected to 1.3 Šresolution with an overall R(merge) value of 0.04 and an R(merge) value of 0.33 in the highest resolution shell.


Subject(s)
Adhesins, Bacterial/chemistry , Streptococcus gordonii/chemistry , Adhesins, Bacterial/isolation & purification , Crystallization , Crystallography, X-Ray
SELECTION OF CITATIONS
SEARCH DETAIL
...