Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
JAC Antimicrob Resist ; 5(4): dlad083, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37441352

ABSTRACT

Objectives: Cystic fibrosis (CF) patients are often colonized with Pseudomonas aeruginosa. During treatment, P. aeruginosa can develop subpopulations exhibiting variable in vitro antimicrobial (ABX) susceptibility patterns. Heteroresistance (HR) may underlie reported discrepancies between in vitro susceptibility results and clinical responses to various ABXs. Here, we sought to examine the presence and nature of P. aeruginosa polyclonal HR (PHR) and monoclonal HR (MHR) to ceftolozane/tazobactam in isolates originating from CF pulmonary exacerbations. Methods: This was a single-centre, non-controlled study. Two hundred and forty-six P. aeruginosa isolates from 26 adult CF patients were included. PHR was defined as the presence of different ceftolozane/tazobactam minimum inhibitory concentration (MIC) values among P. aeruginosa isolates originating from a single patient specimen. Population analysis profiles (PAPs) were performed to assess the presence of MHR, defined as ≥4-fold change in the ceftolozane/tazobactam MIC from a single P. aeruginosa colony. Results: Sixteen of 26 patient specimens (62%) contained PHR P. aeruginosa populations. Of these 16 patients, 6 (23%) had specimens in which PHR P. aeruginosa isolates exhibited ceftolozane/tazobactam MICs with categorical differences (i.e. susceptible versus resistant) compared to results reported as part of routine care. One isolate, PSA 1311, demonstrated MHR. Canonical ceftolozane/tazobactam resistance genes were not found in the MHR isolates (MHR PSA 1311 or PHR PSA 6130). Conclusions: Ceftolozane/tazobactam PHR exists among P. aeruginosa isolates in this work, and approximately a quarter of these populations contained isolates with ceftolozane/tazobactam susceptibiilty interpretations different from what was reported clinically, supporting concerns surrounding the utility of traditional susceptibility testing methodology in the setting of CF specimens. Genome sequencing of isolates with acquired MHR to ceftolozane/tazobactam revealed variants of unknown significance. Future work will be centred on determining the significance of these mutations to better understand these data in clinical context.

3.
J Antimicrob Chemother ; 77(12): 3321-3330, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36227655

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa infection is the leading cause of death among patients with cystic fibrosis (CF) and a common cause of difficult-to-treat hospital-acquired infections. P. aeruginosa uses several mechanisms to resist different antibiotic classes and an individual CF patient can harbour multiple resistance phenotypes. OBJECTIVES: To determine the rates and distribution of polyclonal heteroresistance (PHR) in P. aeruginosa by random, prospective evaluation of respiratory cultures from CF patients at a large referral centre over a 1 year period. METHODS: We obtained 28 unique sputum samples from 19 CF patients and took multiple isolates from each, even when morphologically similar, yielding 280 unique isolates. We performed antimicrobial susceptibility testing (AST) on all isolates and calculated PHR on the basis of variability in AST in a given sample. We then performed whole-genome sequencing on 134 isolates and used a machine-learning association model to interrogate phenotypic PHR from genomic data. RESULTS: PHR was identified in most sampled patients (n = 15/19; 79%). Importantly, resistant phenotypes were not detected by routine AST in 26% of patients (n = 5/19). The machine-learning model, using the extended sampling, identified at least one genetic variant associated with phenotypic resistance in 94.3% of isolates (n = 1392/1476). CONCLUSION: PHR is common among P. aeruginosa in the CF lung. While traditional microbiological methods often fail to detect resistant subpopulations, extended sampling of isolates and conventional AST identified PHR in most patients. A machine-learning tool successfully identified at least one resistance variant in almost all resistant isolates by leveraging this extended sampling and conventional AST.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Humans , Pseudomonas aeruginosa/genetics , Cystic Fibrosis/microbiology , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Respiratory System/microbiology , Microbial Sensitivity Tests
4.
NPJ Biofilms Microbiomes ; 7(1): 68, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34385452

ABSTRACT

Hundreds of thousands of human implant procedures require surgical revision each year due to infection. Infections are difficult to treat with conventional antibiotics due to the formation of biofilm on the implant surface. We have developed a noninvasive method to eliminate biofilm on metal implants using heat generated by intermittent alternating magnetic fields (iAMF). Here, we demonstrate that heat and antibiotics are synergistic in biofilm elimination. For Pseudomonas aeruginosa biofilm, bacterial burden was reduced >3 log with iAMF and ciprofloxacin after 24 h compared with either treatment alone (p < 0.0001). This effect was not limited by pathogen or antibiotic as similar biofilm reductions were seen with iAMF and either linezolid or ceftriaxone in Staphylococcus aureus. iAMF and antibiotic efficacy was seen across various iAMF settings, including different iAMF target temperatures, dose durations, and dosing intervals. Initial mechanistic studies revealed membrane disruption as one factor important for AMF enhanced antibacterial activity in the biofilm setting. This study demonstrates the potential of utilizing a noninvasive approach to reduce biofilm off of metallic implants.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/radiation effects , Magnetic Fields , Metals , Bacteria/drug effects , Bacteria/radiation effects , Ciprofloxacin/pharmacology , Drug Resistance, Bacterial , Humans , Microbial Sensitivity Tests , Prostheses and Implants/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/radiation effects , Staphylococcus aureus/drug effects , Staphylococcus aureus/radiation effects
5.
Article in English | MEDLINE | ID: mdl-33199383

ABSTRACT

Cefiderocol is a siderophore cephalosporin with potent antibacterial activity against a broad range of Gram-negative pathogens, including multidrug-resistant strains. Siderophore antibiotics bind ferric iron and utilize iron transporters to cross the cell membrane. In the biofilm setting, where antibiotic resistance is high but iron scavenging is important, cefiderocol may have advantageous antimicrobial properties. In this study, we compared the antimicrobial activity of cefiderocol to that of seven commonly used antibiotics in well-characterized multidrug-resistant pathogens and then determined their efficacy in the biofilm setting. MIC90 values for cefiderocol were consistently lower than those of other antibiotics (ceftolozane-tazobactam, ceftazidime-avibactam, ceftazidime, piperacillin-tazobactam, imipenem, and tobramycin) in all strains tested. Cefiderocol treatment displayed a reduction in the levels of Pseudomonas aeruginosa biofilm (93%, P < 0.0001) superior to that seen with the other antibiotics (49% to 82%). Cefiderocol was generally as effective as or superior to the other antibiotics, depending on the pathogen-antibiotic combination, in reducing biofilm in other pathogens. There was a trend toward greater biofilm reduction seen with increased antibiotic dose or with increased frequency of antibiotic treatment. We conclude that cefiderocol effectively reduces biofilm and is a potent inhibitor of planktonic growth across a range of Gram-negative medically important pathogens.


Subject(s)
Gram-Negative Bacteria , Gram-Negative Bacterial Infections , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Cephalosporins/pharmacology , Drug Resistance, Multiple, Bacterial , Gram-Negative Bacterial Infections/drug therapy , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Cefiderocol
SELECTION OF CITATIONS
SEARCH DETAIL
...