Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Cancer Res Commun ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38916448

ABSTRACT

Immune checkpoint inhibitors are effective first-line therapy for solid cancers. However, low response rate and acquired resistance over time has led to the need for additional therapeutic options. Here, we evaluated synergistic anti-tumor efficacy of EGFR x MET targeting bispecific antibody, amivantamab with PD-L1 immunotherapy, pembrolizumab in head and neck squamous cell carcinoma (HNSCC) and lung squamous cell carcinoma (LUSC) tumor bearing humanized PDX models. We demonstrated that pembrolizumab or amivantamab alone was ineffective and that combination treatment induced a significant reduction of tumor growth in both models (p<0.0001 and p<0.01, respectively). It appeared that combination of amivantamab and pembrolizumab significantly enhanced infiltration of granzyme B-producing CD8 T cells was in the TME of HNSCC PDX (p<0.01), and enhanced neoantigen-associated central memory CD8 T cells in circulating immune cells. Analysis of single cell RNA transcriptomics suggested that the tumor cells dramatically upregulated EGFR and MET in response to PD-L1 immunotherapy, potentially creating a metabolic state fit for tumor persistence in the tumor microenvironment (TME) and rendered pembrolizumab ineffective. We demonstrated that EGFRHIGHMETHIGH subcluster displayed an increased expression of genes implicated in production of lactate (SLC16A3 and LDHA) compared to the EGFRLOWMETLOW cluster. Accumulation of lactate in the TME has been associated with immunosuppression by hindering the infiltration of tumor killing CD8 T and NK cells. This study proved that amivantamab reduced glycolytic markers in the EGFRHIGHMETHIGH subcluster including SLC16A3 and LDHA and highlighted remodeling of the TME by combination treatment, providing rationale for additional therapy of amivantamab with PD-1 immunotherapy.

2.
Front Immunol ; 15: 1330228, 2024.
Article in English | MEDLINE | ID: mdl-38680496

ABSTRACT

Introduction: Aryl hydrocarbon receptor (AhR) is a transcription factor that performs various functions upon ligand activation. Several studies have explored the role of AhR expression in tumor progression and immune surveillance. Nevertheless, investigations on the distribution of AhR expression, specifically in cancer or immune cells in the tumor microenvironment (TME), remain limited. Examining the AhR expression and distribution in the TME is crucial for gaining insights into the mechanism of action of AhR-targeting anticancer agents and their potential as biomarkers. Methods: Here, we used multiplexed immunohistochemistry (mIHC) and image cytometry to investigate the AhR expression and distribution in 513 patient samples, of which 292 are patients with one of five solid cancer types. Additionally, we analyzed the nuclear and cytosolic distribution of AhR expression. Results: Our findings reveal that AhR expression was primarily localized in cancer cells, followed by stromal T cells and macrophages. Furthermore, we observed a positive correlation between the nuclear and cytosolic expression of AhR, indicating that the expression of AhR as a biomarker is independent of its localization. Interestingly, the expression patterns of AhR were categorized into three clusters based on the cancer type, with high AhR expression levels being found in regulatory T cells (Tregs) in non-small cell lung cancer (NSCLC). Discussion: These findings are anticipated to serve as pivotal evidence for the design of clinical trials and the analysis of the anticancer mechanisms of AhR-targeting therapies.


Subject(s)
Neoplasms , Receptors, Aryl Hydrocarbon , Tumor Microenvironment , Receptors, Aryl Hydrocarbon/metabolism , Humans , Tumor Microenvironment/immunology , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Biomarkers, Tumor/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
3.
Front Immunol ; 15: 1336246, 2024.
Article in English | MEDLINE | ID: mdl-38515751

ABSTRACT

Introduction: To understand the immune system within the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC), it is crucial to elucidate the characteristics of molecules associated with T cell activation. Methods: We conducted an in-depth analysis using single-cell RNA sequencing data obtained from tissue samples of 19 NSCLC patients. T cells were classified based on the Tumor Proportion Score (TPS) within the tumor region, and molecular markers associated with activation and exhaustion were analyzed in T cells from high TPS areas. Results: Notably, tetraspanins CD81 and CD82, belonging to the tetraspanin protein family, were found to be expressed in activated T cells, particularly in cytotoxic T cells. These tetraspanins showed strong correlations with activation and exhaustion markers. In vitro experiments confirmed increased expression of CD81 and CD82 in IL-2-stimulated T cells. T cells were categorized into CD81highCD82high and CD81lowCD82low groups based on their expression levels, with CD81highCD82high T cells exhibiting elevated activation markers such as CD25 and CD69 compared to CD81lowCD82low T cells. This trend was consistent across CD3+, CD8+, and CD4+ T cell subsets. Moreover, CD81highCD82high T cells, when stimulated with anti-CD3, demonstrated enhanced secretion of cytokines such as IFN-γ, TNF-α, and IL-2, along with an increase in the proportion of memory T cells. Bulk RNA sequencing results after sorting CD81highCD82high and CD81lowCD82low T cells consistently supported the roles of CD81 and CD82. Experiments with overexpressed CD81 and CD82 showed increased cytotoxicity against target cells. Discussion: These findings highlight the multifaceted roles of CD81 and CD82 in T cell activation, cytokine production, memory subset accumulation, and target cell cytolysis. Therefore, these findings suggest the potential of CD81 and CD82 as promising candidates for co-stimulatory molecules in immune therapeutic strategies for cancer treatment within the intricate TME.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Antigens, CD/metabolism , Lymphocytes, Tumor-Infiltrating , Interleukin-2/metabolism , Tumor Microenvironment , Lung Neoplasms/metabolism , Cytokines/metabolism , Tetraspanins/metabolism , Tetraspanin 28 , Kangai-1 Protein/metabolism
4.
PLoS One ; 19(2): e0294857, 2024.
Article in English | MEDLINE | ID: mdl-38394177

ABSTRACT

Natural killer (NK) cells have recently shown renewed promise as therapeutic cells for use in treating hematologic cancer indications. Despite this promise, NK cell manufacturing workflows remain largely manual, open, and disconnected, and depend on feeders, as well as outdated unit operations or processes, often utilizing research-grade reagents. Successful scale-up of NK cells critically depends on the availability and performance of nutrient-rich expansion media and cryopreservation conditions that are conducive to high cell viability and recovery post-thaw. In this paper we used Cytiva hardware and media to expand the NK92 cell line in a model process that is suitable for GMP and clinical manufacturing of NK cells. We tested a range of cryopreservation factors including cooling rate, a range of DMSO-containing and DMSO-free cryoprotectants, ice nucleation, and cell density. Higher post-thaw recovery was seen in cryobags over cryovials cooled in identical conditions, and cooling rates of 1°C/min or 2°C/min optimal for cryopreservation in DMSO-containing and DMSO-free cryoprotectants respectively. Higher cell densities of 5x107 cells/ml gave higher post-thaw viability than those cryopreserved at either 1x106 or 5x106 cells/ml. This enabled us to automate, close and connect unit operations within the workflow while demonstrating superior expansion and cryopreservation of NK92 cells. Cellular outputs and performance were conducive to clinical dosing regimens, serving as a proof-of-concept for future clinical and commercial manufacturing.


Subject(s)
Cryopreservation , Dimethyl Sulfoxide , Humans , Dimethyl Sulfoxide/pharmacology , Cell Line , Killer Cells, Natural , Cryoprotective Agents/pharmacology , Cell Survival
5.
Cancers (Basel) ; 15(18)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37760631

ABSTRACT

(1) Background: This study investigated whether polo-like kinase 4 (PLK4) is a suitable therapeutic target or biomarker for lung adenocarcinoma (LUAD). (2) Methods: We acquired LUAD data from The Cancer Genome Atlas (TCGA) database through the UCSC Xena data portal. Gene expression, clinical, survival, and mutation data from multiple samples were analyzed. Gene enrichment analysis, unsupervised clustering of PLK4-related pathways, and differential gene expression analyses were performed. Additionally, correlations, t-tests, survival analyses, and statistical analyses were performed. (3) Results: PLK4 expression was higher in LUAD tissues than in normal tissues and was associated with poor prognosis for both overall and progression-free survival in LUAD. PLK4 was highly correlated with cell-proliferation-related pathways using Gene Ontology (GO) biological process terms. PLK4 expression and pathways that were highly correlated with PLK4 expression levels were upregulated in patients with LUAD with the TP53 mutation. (4) Conclusions: PLK4 expression affects the survival of patients with LUAD and is a potential therapeutic target for LUAD with TP53 mutations.

6.
Front Bioeng Biotechnol ; 11: 1081950, 2023.
Article in English | MEDLINE | ID: mdl-36873350

ABSTRACT

The incidence and mortality rates of lung cancer are high worldwide, where non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases. Recent non-small cell lung cancer research has been focused on analyzing patient prognosis after surgery and identifying mechanisms in connection with clinical cohort and ribonucleic acid (RNA) sequencing data, including single-cell ribonucleic acid (scRNA) sequencing data. This paper investigates statistical techniques and artificial intelligence (AI) based non-small cell lung cancer transcriptome data analysis methods divided into target and analysis technology groups. The methodologies of transcriptome data were schematically categorized so researchers can easily match analysis methods according to their goals. The most widely known and frequently utilized transcriptome analysis goal is to find essential biomarkers and classify carcinomas and cluster NSCLC subtypes. Transcriptome analysis methods are divided into three major categories: Statistical analysis, machine learning, and deep learning. Specific models and ensemble techniques typically used in NSCLC analysis are summarized in this paper, with the intent to lay a foundation for advanced research by converging and linking the various analysis methods available.

7.
Front Chem ; 10: 998013, 2022.
Article in English | MEDLINE | ID: mdl-36545214

ABSTRACT

Among cancer cells, indoleamine 2, 3-dioxygenase1 (IDO1) activity has been implicated in improving the proliferation and growth of cancer cells and suppressing immune cell activity. IDO1 is also responsible for the catabolism of tryptophan to kynurenine. Depletion of tryptophan and an increase in kynurenine exert important immunosuppressive functions by activating regulatory T cells and suppressing CD8+ T and natural killer (NK) cells. In this study, we compared the anti-tumor effects of YH29407, the best-in-class IDO1 inhibitor with improved pharmacodynamics and pharmacokinetics, with first and second-generation IDO1 inhibitors (epacadostat and BMS-986205, respectively). YH29407 treatment alone and anti-PD-1 (aPD-1) combination treatment induced significant tumor suppression compared with competing drugs. In particular, combination treatment showed the best anti-tumor effects, with most tumors reduced and complete responses. Our observations suggest that improved anti-tumor effects were caused by an increase in T cell infiltration and activity after YH29407 treatment. Notably, an immune depletion assay confirmed that YH29407 is closely related to CD8+ T cells. RNA-seq results showed that treatment with YH29407 increased the expression of genes involved in T cell function and antigen presentation in tumors expressing ZAP70, LCK, NFATC2, B2M, and MYD88 genes. Our results suggest that an IDO1 inhibitor, YH29407, has enhanced PK/PD compared to previous IDO1 inhibitors by causing a change in the population of CD8+ T cells including infiltrating T cells into the tumor. Ultimately, YH29407 overcame the limitations of the competing drugs and displayed potential as an immunotherapy strategy in combination with aPD-1.

8.
Ther Adv Med Oncol ; 14: 17588359221079125, 2022.
Article in English | MEDLINE | ID: mdl-35251316

ABSTRACT

INTRODUCTION: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models. METHODS: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified. RESULTS: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib. CONCLUSION: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.

9.
Front Oncol ; 12: 821391, 2022.
Article in English | MEDLINE | ID: mdl-35356198

ABSTRACT

A recently developed treatment strategy for lung cancer that combines immune checkpoint inhibitors with chemotherapy has been applied as a standard treatment for lung adenocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC), and it has improved the outcomes of chemotherapy. Maintenance treatment with anti-PD-1 antibody (aPD-1) enhances the effect of immunochemical combination therapy and improves therapeutic efficacy, which contributes toward a significant improvement in patient survival rates. The AXL receptor tyrosine kinase (AXL), which is expressed in tumor cells, plays an essential role in the resistance of cancers to chemotherapy and immunotherapy, and stimulates signaling associated with epithelial-mesenchymal transition (EMT) in metastatic cancer. AXL is thus an attractive target for controlling resistance to anti-tumor therapies. In this study, we examined the effect of AXL inhibitors on immune activation and tumor growth in TC1 and C3PQ mouse tumor models, in the context of clinical immunotherapy/chemotherapy and maintenance treatment, using an aPD-1 with/without pemetrexed. To determine the optimal timing for administration of SKI-G-801, an AXL inhibitor, we investigated its anti-tumor effects based on inclusion at the immunochemotherapy and maintenance therapy stages. We also performed flow cytometry-based immune profiling of myeloid cells and lymphoid cells at different points in the treatment schedule, to investigate the immune activation and anti-tumor effects of the AXL inhibitor. The addition of SKI-G-801 to the immune checkpoint inhibitor and chemotherapy stage, as well as the maintenance therapy stage, produced the best anti-tumor results, and significant tumor growth inhibition was observed in both the TC1 and C3PQ models. Both models also exhibited increased proportion of effector memory helper T cells and increased expression of CD86+ macrophages. Especially, regulatory T cells were significantly reduced in the TC1 tumor model and there was an increase in central memory cytotoxic T cell infiltration and an increased proportion of macrophages with high CD80 expression in the C3PQ tumor model. These results suggest increased infiltration of T cells, consistent with previous studies using AXL inhibitors. It is expected that the results from this study will serve as a stepping stone for clinical research to improve the existing standard of care.

10.
Clin Transl Immunology ; 11(1): e1364, 2022.
Article in English | MEDLINE | ID: mdl-35003748

ABSTRACT

OBJECTIVES: AXL-mediated activation of aberrant tyrosine kinase drives various oncogenic processes and facilitates an immunosuppressive microenvironment. We evaluated the anti-tumor and anti-metastatic activities of SKI-G-801, a small-molecule inhibitor of AXL, alone and in combination with anti-PD-1 therapy. METHODS: In vitro pAXL inhibition by SKI-G-801 was performed in both human and mouse cancer cell lines. Immunocompetent mouse models of tumor were established to measure anti-metastatic potential of SKI-G-801. Furthermore, SKI-G-801, anti-PD-1 or their combination was administered as an adjuvant or neoadjuvant in the 4T1 tumor model to assess their potential for clinical application. RESULTS: SKI-G-801 robustly inhibited pAXL expression in various cell lines. SKI-G-801 alone or in combination with anti-PD-1 potently inhibited metastasis in B16F10 melanoma, CT26 colon and 4T1 breast models. SKI-G-801 inhibited the growth of B16F10 and 4T1 tumor-bearing mice but not immune-deficient mice. An antibody depletion assay revealed that CD8+ T cells significantly contributed to SKI-G-801-mediated survival. Anti-PD-1 and combination group were observed the increased CD8+Ki67+ and effector T cells and M1 macrophage and decreased M2 macrophage, and granulocytic myeloid-derived suppressor cell (G-MDSC) compared to the control group. The neoadjuvant combination of SKI-G-801 and anti-PD-1 therapy achieved superior survival benefits by inducing more profound T-cell responses in the 4T1 syngeneic mouse model. CONCLUSION: SKI-G-801 significantly suppressed tumor metastasis and growth by enhancing anti-tumor immune responses. Our results suggest that SKI-G-801 has the potential to overcome anti-PD-1 therapy resistance and allow more patients to benefit from anti-PD-1 therapy.

11.
Yonsei Med J ; 63(1): 42-55, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34913283

ABSTRACT

PURPOSE: Agonists of the stimulator of interferon genes (STING) play a key role in activating the STING pathway by promoting the production of cytokines. In this study, we investigated the antitumor effects and activation of the systemic immune response of treatment with DMXAA (5,6-dimethylxanthenone-4-acetic acid), a STING agonist, in EML4-ALK lung cancer and CT26 colon cancer. MATERIALS AND METHODS: The abscopal effects of DMXAA in the treatment of metastatic skin nodules were assessed. EML4-ALK lung cancer and CT26 colon cancer models were used to evaluate these effects after DMXAA treatment. To evaluate the expression of macrophages and T cells, we sacrificed the tumor-bearing mice after DMXAA treatment and obtained the formalin-fixed paraffin-embedded (FFPE) tissue and tumor cells. Immunohistochemistry and flow cytometry were performed to analyze the expression of each FFPE and tumor cell. RESULTS: We observed that highly infiltrating immune cells downstream of the STING pathway had increased levels of chemokines after DMXAA treatment. In addition, the levels of CD80 and CD86 in antigen-presenting cells were significantly increased after STING activation. Furthermore, innate immune activation altered the systemic T cell-mediated immune responses, induced proliferation of macrophages, inhibited tumor growth, and increased numbers of cytotoxic memory T cells. Tumor-specific lymphocytes also increased in number after treatment with DMXAA. CONCLUSION: The abscopal effect of DMXAA treatment on the skin strongly reduced the spread of EML4-ALK lung cancer and CT26 colon cancer through the STING pathway and induced the presentation of antigens.


Subject(s)
Memory T Cells , Skin Neoplasms , Animals , Immunotherapy , Macrophages , Membrane Proteins/genetics , Mice
13.
Cancers (Basel) ; 13(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771527

ABSTRACT

Cancer cells are able to reprogram their glucose metabolism and retain energy via glycolysis even under aerobic conditions. They activate the hexosamine biosynthetic pathway (HBP), and the complex interplay of O-linked N-acetylglucosaminylation (O-GlcNAcylation) via deprivation of nutrients or increase in cellular stress results in the proliferation, progression, and metastasis of cancer cells. Notably, cancer is one of the emerging diseases associated with O-GlcNAcylation. In this review, we summarize studies that delineate the role of O-GlcNAcylation in cancer, including its modulation in metastasis, function with receptor tyrosine kinases, and resistance to chemotherapeutic agents, such as cisplatin. In addition, we discuss the function of O-GlcNAcylation in eliciting immune responses associated with immune surveillance in the tumor microenvironment. O-GlcNAcylation is increasingly accepted as one of the key players involved in the activation and differentiation of T cells and macrophages. Finally, we discuss the prognostic role of O-GlcNAcylation and potential therapeutic agents such as O-linked ß-N-acetylglucosamine-transferase inhibitors, which may help overcome the resistance mechanism associated with the reprogramming of glucose metabolism.

14.
Cancers (Basel) ; 13(15)2021 Jul 22.
Article in English | MEDLINE | ID: mdl-34359582

ABSTRACT

Up to 40% of patients with epidermal growth factor receptor (EGFR) mutation-positive non-small-cell lung cancer (NSCLC) may develop central nervous system (CNS) metastases throughout their disease. Moreover, the first- and second-generation EGFR-tyrosine kinase inhibitors have limited efficacy because of their poor blood-brain barrier permeability. Therefore, we conducted preplanned analyses of ASTRIS, a clinical study of the third-generation EGFR-TKI osimertinib to demonstrate its potential role in intracranial response efficacies. We retrospectively examined 89 NSCLC patients with brain evaluation who were not amenable to curative surgery or radiotherapy and received osimertinib upon confirmation of the presence of the T790M mutation. We collected the information regarding patients' baseline characteristics, baseline intracranial status, including leptomeningeal metastases (LM), and intracranial responses measured by Response Evaluation Criteria in Solid Tumors version 1.1, using independent central review. The median age was 60 years, and 69.7% of the patients were female. Sixty-five patients (73.0%) had brain metastases (BM) at baseline and nineteen patients (23.5%) had additional LM. Among patients with brain metastases, 24 (36.9%) had ≥1 measurable brain metastases and 16 were evaluated for the objective response. In the CNS evaluable for response set, the intracranial objective response rate (cORR) and disease control rate (cDCR) were 62.5% (95% confidence interval (CI), 38.3-82.6%) and 93.8% (95% CI, 74.3-99.3%), respectively. The median intracranial progression-free survival (cPFS) was 13.0 (95% CI, 7.21-18.8) months, including patients with measurable and non-measurable BM or LM. Our cORR, cDCR, and cPFS were comparable to those observed in previous clinical trials. The outcome of this study helps to demonstrate the potential role of intracranial efficacies of osimertinib 80 mg administration in T790M-positive advanced NSCLC with/without BM or LM.

15.
Cancers (Basel) ; 13(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205733

ABSTRACT

OBJECTIVES: Patients with epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) ultimately acquire resistance to EGFR tyrosine kinase inhibitors (TKIs) during treatment. In 5-22% of these patients, resistance is mediated by aberrant mesenchymal epithelial transition factor (MET) gene amplification. Here, we evaluated the emergence of MET amplification after EGFR-TKI treatment failure based on clinical parameters. MATERIALS AND METHODS: We retrospectively analyzed 186 patients with advanced EGFR-mutant NSCLC for MET amplification status by in situ hybridization (ISH) assay after EGFR-TKI failure. We collected information including baseline patient characteristics, metastatic locations and generation, line, and progression-free survival (PFS) of EGFR-TKI used before MET evaluation. Multivariate logistic regression analysis was conducted to evaluate associations between MET amplification status and clinical variables. RESULTS: Regarding baseline EGFR mutations, exon 19 deletion was predominant (57.5%), followed by L858R mutation (37.1%). The proportions of MET ISH assays performed after first/second-generation and third-generation TKI failure were 66.7% and 33.1%, respectively. The median PFS for the most recent EGFR-TKI treatment was shorter in MET amplification-positive patients than in MET amplification-negative patients (median PFS 7.0 vs. 10.4 months, p = 0.004). Multivariate logistic regression demonstrated that a history of smoking, short PFS on the most recent TKI, and less intracranial progression were associated with a high probability of MET amplification (all p < 0.05). CONCLUSIONS: Our results demonstrated the distinct clinical characteristics of patients with MET amplification-positive NSCLC after EGFR-TKI therapy. Our clinical prediction can aid physicians in selecting patients eligible for MET amplification screening and therapeutic targeting.

16.
Eur J Cancer ; 153: 179-189, 2021 08.
Article in English | MEDLINE | ID: mdl-34182269

ABSTRACT

OBJECTIVE: Anti-programmed death (PD)-1 therapy confers sustainable clinical benefits for patients with non-small-cell lung cancer (NSCLC), but only some patients respond to the treatment. Various clinical characteristics, including the PD-ligand 1 (PD-L1) level, are related to the anti-PD-1 response; however, none of these can independently serve as predictive biomarkers. Herein, we established a machine learning (ML)-based clinical decision support algorithm to predict the anti-PD-1 response by comprehensively combining the clinical information. MATERIALS AND METHODS: We collected clinical data, including patient characteristics, mutations and laboratory findings, from the electronic medical records of 142 patients with NSCLC treated with anti-PD-1 therapy; these were analysed for the clinical outcome as the discovery set. Nineteen clinically meaningful features were used in supervised ML algorithms, including LightGBM, XGBoost, multilayer neural network, ridge regression and linear discriminant analysis, to predict anti-PD-1 responses. Based on each ML algorithm's prediction performance, the optimal ML was selected and validated in an independent validation set of PD-1 inhibitor-treated patients. RESULTS: Several factors, including PD-L1 expression, tumour burden and neutrophil-to-lymphocyte ratio, could independently predict the anti-PD-1 response in the discovery set. ML platforms based on the LightGBM algorithm using 19 clinical features showed more significant prediction performance (area under the curve [AUC] 0.788) than on individual clinical features and traditional multivariate logistic regression (AUC 0.759). CONCLUSION: Collectively, our LightGBM algorithm offers a clinical decision support model to predict the anti-PD-1 response in patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Machine Learning/standards , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/pathology , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Lung Neoplasms/pathology , Male , Middle Aged
17.
Cancer Treat Rev ; 99: 102240, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34119803

ABSTRACT

The development of cancer therapies using monoclonal antibodies has been successful during the last 30 years. Recently much progress was achieved with technologies involving bispecific and multi-specific antibodies. Bispecific antibodies (BsAbs) are antibodies that bind two distinct epitopes, and a large number of potential clinical applications of BsAbs have been described. Here we review mechanism of action, clinical development and future challenges of BsAbs which could be a serve as a valuable arsenal in cancer patients.


Subject(s)
Antibodies, Bispecific/therapeutic use , Neoplasms/immunology , Neoplasms/therapy , Antibodies, Bispecific/immunology , Antineoplastic Agents, Immunological/therapeutic use , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Humans , Immune Checkpoint Inhibitors/therapeutic use , Randomized Controlled Trials as Topic
18.
Eur J Cancer ; 143: 113-126, 2021 01.
Article in English | MEDLINE | ID: mdl-33302114

ABSTRACT

BACKGROUND: The predictive value of immune monitoring with circulating CD8+ T lymphocytes for treatment response to programmed cell death protein 1 (PD-1) inhibitors has not been explored in non-small-cell lung cancer (NSCLC), prompting us to investigate whether dynamic changes in PD-1+CD8+ T lymphocytes have predictive value for durable clinical benefit (DCB) and survival after PD-1 blockade. METHODS: Patients with recurrent and/or metastatic NSCLC treated with PD-1 inhibitors were enrolled (discovery cohort; n = 94). Peripheral blood was obtained immediately before and after one cycle of treatment with PD-1 blockade. Phenotyping of circulating CD8+ T lymphocytes was conducted using multi-colour flow cytometry. Predictive values of dynamic changes in circulating PD-1+CD8+ T lymphocytes during the first cycle were validated in an independent cohort (validation cohort; n = 54) of a prospective trial with a PD-1 inhibitor (NCT03486119). RESULTS: Circulating PD-1+CD8+ T lymphocytes were enriched with effector/memory populations with elevated expression of activation- and exhaustion-related markers. Reduction in the frequency of PD-1+ cells among CD8+ T lymphocytes after one cycle of treatment was associated with a higher probability of DCB and superior survival outcomes in the discovery cohort. Similar results were obtained in the analysis of tumour antigen NY-ESO-1-specific CD8+ T lymphocytes and the validation cohort. Mechanistically, PD-1 molecule expression on CD8+ T lymphocytes suppresses the effector functions of tumour antigen-specific CD8+ T lymphocytes. CONCLUSIONS: Dynamic changes in circulating PD-1+CD8+ T lymphocytes predict clinical, and survival benefit from PD-1 blockade treatment in NSCLC, providing a useful tool to identify patient subgroups who will optimally benefit from PD-1 inhibitors.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Adult , Aged , Aged, 80 and over , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Male , Middle Aged
19.
Br J Cancer ; 123(12): 1720-1729, 2020 12.
Article in English | MEDLINE | ID: mdl-32963347

ABSTRACT

BACKGROUND: Recurrent and/or metastatic squamous cell carcinoma of head and neck (R/M SCCHN) is a common cancer with high recurrence and mortality. Current treatments have low response rates (RRs). METHODS: Fifty-three patients with R/M SCCHN received continuous oral buparlisib. In parallel, patient-derived xenografts (PDXs) were established in mice to evaluate resistance mechanisms and efficacy of buparlisib/cetuximab combination. Baseline and on-treatment tumour genomes and transcriptomes were sequenced. Based on the integrated clinical and PDX data, 11 patients with progression under buparlisib monotherapy were treated with a combination of buparlisib and cetuximab. RESULTS: For buparlisib monotherapy, disease control rate (DCR) was 49%, RR was 3% and median progression-free survival (PFS) and overall survival (OS) were 63 and 143 days, respectively. For combination therapy, DCR was 91%, RR was 18% and median PFS and OS were 111 and 206 days, respectively. Four PDX models were originated from patients enrolled in the current clinical trial. While buparlisib alone did not inhibit tumour growth, combination therapy achieved tumour inhibition in three of seven PDXs. Genes associated with apoptosis and cell-cycle arrest were expressed at higher levels with combination treatment than with buparlisib or cetuximab alone. CONCLUSIONS: The buparlisib/cetuximab combination has significant promise as a treatment strategy for R/M SCCHN. CLINICAL TRIAL REGISTRATION: NCT01527877.


Subject(s)
Aminopyridines/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Cetuximab/therapeutic use , Head and Neck Neoplasms/drug therapy , Morpholines/therapeutic use , Adult , Aged , Aged, 80 and over , Aminopyridines/adverse effects , Animals , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Apoptosis/genetics , Cell Cycle Checkpoints/genetics , Cell Survival/drug effects , Cetuximab/adverse effects , DNA Copy Number Variations , Drug Resistance, Neoplasm , Female , Gene Expression Profiling , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/mortality , Humans , Male , Mice , Mice, Nude , Mice, SCID , Middle Aged , Morpholines/adverse effects , Mutation , Neoplasm Transplantation , Progression-Free Survival , Reproducibility of Results , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/mortality , Treatment Outcome , Up-Regulation/genetics , Whole Genome Sequencing/methods
20.
J Immunother Cancer ; 8(2)2020 07.
Article in English | MEDLINE | ID: mdl-32727812

ABSTRACT

BACKGROUND: EML4-ALK is a distinct molecular entity that is highly sensitive to ALK tyrosine kinase inhibitors (TKIs). Immune checkpoint inhibitors (ICIs) have not proved efficacy in ALK-positive non-small cell lung cancer so far. In this study, we performed a mouse clinical trial using EML4-ALK transgenic mice model to comprehensively investigate immunomodulatory effects of ALK TKI and to investigate the mechanisms of resistance to ICIs. METHODS: EML4-ALK transgenic mice were randomized to three treatment arms (arm A: antiprogrammed death cell protein-1 (PD-1), arm B: ceritinib, arm C: anti-PD-1 and ceritinib), and tumor response was evaluated using MRI. Progression-free survival and overall survival were measured to compare the efficacy. Flow cytometry, multispectral imaging, whole exome sequencing and RNA sequencing were performed from tumors obtained before and after drug resistance. RESULTS: Mouse clinical trial revealed that anti-PD-1 therapy was ineffective, and the efficacy of ceritinib and anti-PD-1 combination was not more effective than ceritinib alone in the first line. Dynamic changes in immune cells and cytokines were observed following each treatment, while changes in T lymphocytes were not prominent. A closer look at the tumor immune microenvironment before and after ceritinib resistance revealed increased regulatory T cells and programmed death-ligand 1 (PD-L1)-expressing cells both in the tumor and the stroma. Despite the increase of PD-L1 expression, these findings were not accompanied by increased effector T cells which mediate antitumor immune responses. CONCLUSIONS: ALK-positive tumors progressing on ceritinib is not immunogenic enough to respond to immune checkpoint inhibitors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , Immunity/immunology , Lung Neoplasms/immunology , Animals , Disease Models, Animal , Humans , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...