Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203788

ABSTRACT

Detection of the Kirsten rat sarcoma gene (KRAS) mutational status is an important factor for the treatment of various malignancies. The most common KRAS-activating mutations are caused by single-nucleotide mutations, which are usually determined by using PCR, using allele-specific DNA primers. Oligonucleotide primers with uncharged or partially charged internucleotide phosphate modification have proved their ability to increase the sensitivity and specificity of various single nucleotide mutation detection. To enhance the specificity of single nucleotide mutation detection, the novel oligonucleotides with four types of uncharged and partially charged internucleotide phosphates modification, phosphoramide benzoazole (PABA) oligonucleotides (PABAO), was used to prove the concept on the KRAS mutation model. The molecular effects of different types of site-specific PABA modification in a primer or a template on a synthesis of full-length elongation product and PCR efficiency were evaluated. The allele-specific PCR (AS-PCR) on plasmid templates showed a significant increase in analysis specificity without changes in Cq values compared with unmodified primer. PABA modification is a universal mismatch-like disturbance, which can be used for single nucleotide polymorphism discrimination for various applications. The molecular insights of the PABA site-specific modification in a primer and a template affect PCR, structural features of four types of PABAO in connection with AS-PCR results, and improvements of AS-PCR specificity support the further design of novel PCR platforms for various biological targets testing.


Subject(s)
4-Aminobenzoic Acid , Amides , Oligonucleotides , Phosphoramides , Phosphoric Acids , Oligonucleotides/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins p21(ras) , Phosphates , Nucleotides , Azoles , Polymerase Chain Reaction
2.
Biochemistry (Mosc) ; 88(8): 1165-1180, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37758315

ABSTRACT

Serum albumin is currently in the focus of biomedical research as a promising platform for the creation of multicomponent self-assembling systems due to the presence of several sites with high binding affinity of various compounds in its molecule, including lipophilic oligonucleotide conjugates. In this work, we investigated the stoichiometry of the dodecyl-containing oligonucleotides binding to bovine and human serum albumins using an electrophoretic mobility shift assay. The results indicate the formation of the albumin-oligonucleotide complexes with a stoichiometry of about 1 : (1.25 ± 0.25) under physiological-like conditions. Using atomic force microscopy, it was found that the interaction of human serum albumin with the duplex of complementary dodecyl-containing oligonucleotides resulted in the formation of circular associates with a diameter of 165.5 ± 94.3 nm and 28.9 ± 16.9 nm in height, and interaction with polydeoxyadenylic acid and dodecyl-containing oligothymidylate resulted in formation of supramolecular associates with the size of about 315.4 ± 70.9 and 188.3 ± 43.7 nm, respectively. The obtained data allow considering the dodecyl-containing oligonucleotides and albumin as potential components of the designed self-assembling systems for solving problems of molecular biology, biomedicine, and development of unique theranostics with targeted action.


Subject(s)
Oligonucleotides , Serum Albumin , Animals , Cattle , Humans , Oligonucleotides/chemistry , Serum Albumin/metabolism , Microscopy, Atomic Force , Electrophoretic Mobility Shift Assay
3.
ACS Omega ; 8(1): 1556-1566, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643477

ABSTRACT

In this work, we present new oligonucleotide derivatives containing inter-nucleotide N-benzimidazole, N-benzoxazole, N-benzothiazole, and 1,3-dimethyl-N-benzimidazole (benzoazoles) phosphoramide groups. These modifications were introduced via the Staudinger reaction with appropriate azides during standard automated solid-phase oligonucleotide synthesis. The principal structural difference between the new azido modifiers and those already known is that they are bulk heterocyclic structures, similar to purine nucleoside bases. Modified oligonucleotides with one and two modifications at different positions and multiple modified heteronucleotide sequences were obtained with high yields. The possibility of multiple modifications in the process of automatic DNA synthesis is fundamental and critical for further application of our oligonucleotide derivatives. Initial studies on the properties of new oligonucleotides were carried out. The stability of the oligodeoxyribonucleotide duplex containing phosphoramide groups of N-benzoazoles with complementary DNA or RNA is slightly lower than that of native complexes.

4.
Diagnostics (Basel) ; 13(2)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36673060

ABSTRACT

Phosphoryl guanidine (PG) is the novel uncharged modification of internucleotide phosphates of oligonucleotides. Incorporating PG modification into PCR primers leads to increased discrimination between wild-type and mutated DNA, providing extraordinary detection limits in an allele-specific real-time polymerase chain reaction (AS-PCR). Herein, we used PG-modification to improve the specificity of AS primers with unfavorable Pyr/Pur primer's 3'-end mismatch in the template/primer complex. Two mutations of the PIK3CA gene (E542K, E545K) were chosen to validate the advantages of the PG modification. Several primers with PG modifications were synthesized for each mutation and assessed using AS-PCR with the plasmid controls and DNA obtained from formalin-fixed paraffin-embedded (FFPE) tissues. The assay allows the detection of 0.5% of mutated DNA on the wild-type DNA plasmid template's background with good specificity. Compared with ddPCR, the primers with PG-modification demonstrated 100% specificity and 100% sensitivity on the DNA from FFPE with mutation presence higher than 0.5%. Our results indicate the high potential of PG-modified primers for point mutation detection. The main principle of the developed methodology can be used to improve the specificity of primers regardless of sequences.

5.
Molecules ; 29(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202593

ABSTRACT

New tool development for various nucleic acid applications is an essential task in RNA nanotechnology. Here, we determined the ability of self-limited complex formation by a pair of oligoribonucleotides carrying two pairwise complementary blocks connected by a linker of different lengths in each chain. The complexes were analyzed using UV melting, gel shift assay analysis, and molecular dynamics (MD) simulations. We have demonstrated the spontaneous formation of various self-limited and concatemer complexes. The linear concatemer complex is formed by a pair of oligomers without a linker in at least one of them. Longer linkers resulted in the formation of circular complexes. The self-limited complexes formation was confirmed using the toehold strand displacement. The MD simulations indicate the reliability of the complexes' structure and demonstrate their dynamics, which increase with the rise of complex size. The linearization of 2D circular complexes into 1D structures and a reverse cyclization process were demonstrated using a toehold-mediated approach. The approach proposed here for the construction and directed modification of the molecularity and shape of complexes will be a valuable tool in RNA nanotechnology, especially for the rational design of therapeutic nucleic acids with high target specificity and the programmable response of the immune system of organisms.


Subject(s)
Nucleic Acids , RNA , Reproducibility of Results , Biological Assay , Cyclization
6.
Bioorg Chem ; 127: 105987, 2022 10.
Article in English | MEDLINE | ID: mdl-35777231

ABSTRACT

Efficient protocols were developed for the synthesis of a new compounds - nucleoside 5'-α-iminophosphates using the Staudinger reaction. These substances are alpha-phosphate mimetic nucleotide in which an oxygen atom is replaced by a corresponding imino (=N-R)-group. Various 5'-iminomonophosphates of nucleosides were obtained. A chemical method for the synthesis of triphosphate derivatives based on the iminomonophosphates has been designed. Thymidine 5'-(1,3-dimethylimidazolidin-2-ylidene)-triphosphate (ppp(DMI)T) was synthesized, its hydrolytic stability and substrate properties in relation to some DNA polymerases was firstly studied. It was shown that ppp(DMI)T can serve as substrate for enzyme catalyzed template-independent DNA synthesis by human terminal deoxynucleotidyltransferase TdT.


Subject(s)
DNA-Directed DNA Polymerase , Nucleosides , DNA Nucleotidylexotransferase/chemistry , DNA-Directed DNA Polymerase/chemistry , Humans , Nucleosides/chemistry , Nucleotides/chemistry , Thymidine
7.
RSC Adv ; 12(11): 6416-6431, 2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35424594

ABSTRACT

The development of approaches to the design of two- and three-dimensional self-assembled DNA-based nanostructures with a controlled shape and size is an essential task for applied nanotechnology, therapy, biosensing, and bioimaging. We conducted a comprehensive study on the formation of various complexes from a pair of oligonucleotides with two transposed complementary blocks that can be linked through a nucleotide or non-nucleotide linker. A methodology is proposed to prove the formation of a self-limited complex and to determine its molecularity. It is based on the "opening" of a self-limited complex with an oligonucleotide that effectively binds to a duplex-forming block. The complexes assembled from a pair of oligonucleotides with different block length and different linker sizes and types were investigated by theoretical analysis, several experimental methods (a gel shift assay, atomic force microscopy, and ultraviolet melting analysis), and molecular dynamics simulations. The results showed a variety of complexes formed by only a pair of oligonucleotides. Self-limited associates, concatemer complexes, or mixtures thereof can arise if we change the length of a duplex and loop-forming blocks in oligonucleotides or via introduction of overhangs and chemical modifications. We postulated basic principles of rational design of native self-limited DNA complexes of desired structure, shape, and molecularity. Our foundation makes self-limited complexes useful tools for nanotechnology, biological studies, and therapeutics.

8.
Mol Ther Nucleic Acids ; 27: 211-226, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-34976439

ABSTRACT

Antisense gapmer oligonucleotides containing phosphoryl guanidine (PG) groups, e.g., 1,3-dimethylimidazolidin-2-imine, at three to five internucleotidic positions adjacent to the 3' and 5' ends were prepared via the Staudinger chemistry, which is compatible with conditions of standard automated solid-phase phosphoramidite synthesis for phosphodiester and, notably, phosphorothioate linkages, and allows one to design a variety of gapmeric structures with alternating linkages, and deoxyribose or 2'-O-methylribose backbone. PG modifications increased nuclease resistance in serum-containing medium for more than 21 days. Replacing two internucleotidic phosphates by PG groups in phosphorothioate-modified oligonucleotides did not decrease their cellular uptake in the absence of lipid carriers. Increasing the number of PG groups from two to seven per oligonucleotide reduced their ability to enter the cells in the carrier-free mode. Cationic liposomes provided similar delivery efficiency of both partially PG-modified and unmodified oligonucleotides. PG-gapmers were designed containing three to four PG groups at both wings and a central "window" of seven deoxynucleotides with either phosphodiester or phosphorothioate linkages targeted to MDR1 mRNA providing multiple drug resistance of tumor cells. Gapmers efficiently silenced MDR1 mRNA and restored the sensitivity of tumor cells to chemotherapeutics. Thus, PG-gapmers can be considered as novel, promising types of antisense oligonucleotides for targeting biologically relevant RNAs.

9.
Nanomaterials (Basel) ; 11(11)2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34835540

ABSTRACT

There is an urgent need to develop systems for nucleic acid delivery, especially for the creation of effective therapeutics against various diseases. We have previously shown the feasibility of efficient delivery of small interfering RNA by means of gold nanoparticle-based multilayer nanoconstructs (MLNCs) for suppressing reporter protein synthesis. The present work is aimed at improving the quality of preparations of desired MLNCs, and for this purpose, optimal conditions for their multistep fabrication were found. All steps of this process and MLNC purification were verified using dynamic light scattering, transmission electron microscopy, and UV-Vis spectroscopy. Factors influencing the efficiency of nanocomposite assembly, colloidal stability, and purification quality were identified. These data made it possible to optimize the fabrication of target MLNCs bearing small interfering RNA and to substantially improve end product quality via an increase in its homogeneity and a decrease in the amount of incomplete nanoconstructs. We believe that the proposed approaches and methods will be useful for researchers working with lipid nanoconstructs.

10.
Int J Mol Sci ; 22(18)2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34575949

ABSTRACT

Small interfering RNA (siRNA) is the most important tool for the manipulation of mRNA expression and needs protection from intracellular nucleases when delivered into the cell. In this work, we examined the effects of siRNA modification with the phosphoryl guanidine (PG) group, which, as shown earlier, makes oligodeoxynucleotides resistant to snake venom phosphodiesterase. We obtained a set of siRNAs containing combined modifications PG/2'-O-methyl (2'-OMe) or PG/2'-fluoro (2'-F); biophysical and biochemical properties were characterized for each duplex. We used the UV-melting approach to estimate the thermostability of the duplexes and RNAse A degradation assays to determine their stability. The ability to induce silencing was tested in cultured cells stably expressing green fluorescent protein. The introduction of the PG group as a rule decreased the thermodynamic stability of siRNA. At the same time, the siRNAs carrying PG groups showed increased resistance to RNase A. A gene silencing experiment indicated that the PG-modified siRNA retained its activity if the modifications were introduced into the passenger strand.


Subject(s)
Oligodeoxyribonucleotides/genetics , RNA, Double-Stranded/antagonists & inhibitors , RNA, Small Interfering/genetics , Ribonucleases/genetics , Guanidine/chemistry , Humans , Oligodeoxyribonucleotides/antagonists & inhibitors , Oligodeoxyribonucleotides/pharmacology , RNA Interference , RNA, Double-Stranded/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/pharmacology , Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/genetics , Ribonucleases/chemistry , Thermodynamics
11.
Biochem Biophys Res Commun ; 577: 110-115, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34509722

ABSTRACT

Phosphoryl guanidine oligonucleotides (PGOs) are promising uncharged analogs of nucleic acids and are used in a variety of applications. The importance of hydration is frequently ignored during the design of modified nucleic acid probes. Such hydrophobic modifications (phosphoryl guanidine) are expected to have a significant impact on the structure and thermal stability of the affected oligo with complementary nucleic acids. Here we aimed to investigate (by the osmotic stress method) hydration changes upon the formation of a duplex of a PGO with complementary DNA. According to our results, the presence of phosphoryl guanidines in one or both strands of a duplex only minimally affects hydration alterations under crowding conditions. The secondary structure of native and modified duplexes did not change significantly in the presence of ethanol, ethylene glycol, polyethylene glycol 200, or polyethylene glycol 1000. After the addition of a cosolvent, the thermodynamic stability of the PGO complexes changed in the same manner as that seen in a corresponding DNA duplex. The findings reported here and our previous studies form the basis for efficient use of PGOs in basic research and a variety of applications.


Subject(s)
DNA/chemistry , Guanidine/chemistry , Nucleic Acid Conformation , Nucleic Acid Hybridization/methods , Oligonucleotides/chemistry , Thermodynamics , Circular Dichroism/methods , DNA/genetics , DNA/metabolism , Ethanol/chemistry , Guanidine/metabolism , Models, Molecular , Molecular Dynamics Simulation , Nucleic Acid Denaturation , Nucleic Acids/chemistry , Nucleic Acids/genetics , Nucleic Acids/metabolism , Oligonucleotides/genetics , Oligonucleotides/metabolism , Polyethylene Glycols/chemistry , Solutions/chemistry
12.
Int J Mol Sci ; 22(11)2021 May 27.
Article in English | MEDLINE | ID: mdl-34072209

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a method of nucleic acid amplification that is more stable and resistant to DNA amplification inhibitors than conventional PCR. LAMP multiplexing with reverse transcription allows for the single-tube amplification of several RNA fragments, including an internal control sample, which provides the option of controlling all analytical steps. We developed a method of SARS-CoV-2 viral RNA detection based on multiplex reverse-transcription LAMP, with single-tube qualitative analysis of SARS-CoV-2 RNA and MS2 phage used as a control RNA. The multiplexing is based on the differences in characteristic melting peaks generated during the amplification process. The developed technique detects at least 20 copies of SARS-CoV-2 RNA per reaction on a background of 12,000 MS2 RNA copies. The total time of analysis does not exceed 40 min. The method validation, performed on 125 clinical samples of patients' nasal swabs, showed a 97.6% concordance rate with the results of real-time (RT)-PCR assays. The developed multiplexed LAMP can be employed as an alternative to PCR in diagnostic practice to save personnel and equipment time.


Subject(s)
COVID-19 Nucleic Acid Testing , COVID-19 , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , RNA, Messenger/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/genetics , Humans , Nucleic Acid Denaturation
13.
Nanomaterials (Basel) ; 11(5)2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33947157

ABSTRACT

Fluorophore (FD) labeling is widely used for detection and quantification of various compounds bound to nanocarriers. The systems, composed of gold nanoparticles (GNPs) and oligonucleotides (ONs) labeled with FDs, have wide applications. Our work was aimed at a systemic study of how FD structure (in composition of ON-FDs) influenced the efficiency of their non-covalent associates' formation with GNPs (ON-FD/GNPs). We examined ONs of different length and nucleotide composition, and corresponding ON-FDs (FDs from a series of xanthene, polymethine dyes; dyes based on polycyclic aromatic hydrocarbons). Methods: fluorometry, dynamic light scattering, high performance liquid chromatography, gel electrophoresis, molecular modeling and methods of thermodynamic and statistical analysis. We observed significant, differing several times, changes in surface density and Langmuir constant values of ON-FDs vs. ONs, evidence for the critical significance of FD nature for binding of ON-FDs with GNPs. Surface density of ON-FD/GNPs; hydrophobicity and total charge of ON or ON-FD; and charge and surface area of FDs were revealed as key factors determining affinity (Langmuir constant) of ON or ON-FDs for GNPs. These factors compose a specific set, which makes possible the highly reliable prediction of efficiency of ONs and ON-FDs binding with GNPs. The principal possibility of creating an algorithm for predictive calculation of efficiency of ONs and GNPs interaction was demonstrated. We proposed a hypothetical model that described the mechanism of contact interaction between negatively charged nano-objects, such as citrate-stabilized GNPs, and ONs or ON-FDs.

14.
J Phys Chem B ; 125(11): 2841-2855, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33724825

ABSTRACT

Phosphoryl guanidine oligonucleotides (PGOs) are promising tools for biological research and development of biosensors and therapeutics. We performed structural and hybridization analyses of octa-, deca-, and dodecamers with all phosphate residues modified by 1,3-dimethylimidazolidine-2-imine moieties. Similarity of the B-form double helix between native and modified duplexes was noted. In PGO duplexes, we detected a decrease in the proportion of C2'-endo and an increased proportion of C1'-exo sugar conformations of the modified chain. Applicability of the two-state model to denaturation transition of all studied duplexes was proved for the first time. Sequence-dependent effects of this modification on hybridization properties were observed. The thermal stability of PGO complexes is almost native at 100 mM NaCl and slightly increases with decreasing ionic strength. An increase in water activity and dramatic changes in interaction with cations and in solvation of PGOs and their duplexes were noted, resulting in slight elevation of the melting temperature after an ionic-strength decrease from 1 M NaCl down to deionized water. Decreased binding of sodium ions and decreased water solvation were documented for PGOs and their duplexes. In contrast to DNA, the PGO duplex formation leads to a release of several cations. The water shell is significantly more disordered near PGOs and their complexes. Nevertheless, changes in solvation during the formation of native and PGO complexes are similar and indicate that it is possible to develop models for predictive calculations of the thermodynamic properties of phosphoryl guanidine oligomers. Our results may help devise an approach for the rational design of PGOs as novel improved molecular probes and tools for many modern methods involving oligonucleotides.


Subject(s)
Oligodeoxyribonucleotides , Phosphates , Guanidine , Nucleic Acid Conformation , Nucleic Acid Hybridization , Oligonucleotides , Thermodynamics
15.
Nanomaterials (Basel) ; 10(10)2020 Sep 29.
Article in English | MEDLINE | ID: mdl-33003636

ABSTRACT

The conjugation of lipophilic groups to oligonucleotides is a promising approach for improving nucleic acid-based therapeutics' intracellular delivery. Lipid oligonucleotide conjugates can self-aggregate in aqueous solution, which gains much attention due to the formation of micellar particles suitable for cell endocytosis. Here, we describe self-association features of novel "like-a-brush" oligonucleotide conjugates bearing three dodecyl chains. The self-assembly of the conjugates into 30-170 nm micellar particles with a high tendency to aggregate was shown using dynamic light scattering (DLS), atomic force (AFM), and transmission electron (TEM) microscopies. Fluorescently labeled conjugates demonstrated significant quenching of fluorescence intensity (up to 90%) under micelle formation conditions. The conjugates possess increased binding affinity to serum albumin as compared with free oligonucleotides. The dodecyl oligonucleotide conjugate and its duplex efficiently internalized and accumulated into HepG2 cells' cytoplasm without any transfection agent. It was shown that the addition of serum albumin or fetal bovine serum to the medium decreased oligonucleotide uptake efficacy (by 22.5-36%) but did not completely inhibit cell penetration. The obtained results allow considering dodecyl-containing oligonucleotides as scaffold compounds for engineering nucleic acid delivery vehicles.

16.
Diagnostics (Basel) ; 10(11)2020 Oct 26.
Article in English | MEDLINE | ID: mdl-33114622

ABSTRACT

Establishing the Kirsten rat sarcoma (KRAS) mutational status is essential in terms of managing patients with various types of cancer. Allele-specific real-time polymerase chain reaction (AS-PCR) is a widely used method for somatic mutations detection. To improve the limited sensitivity and specificity, several blocking methods have been introduced in AS-PCR to block the amplification of wild-type templates. Herein, we used a novel modified oligonucleotide with internucleotide phosphates reshaped 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups) as primers and blockers in the AS-PCR method. Four common KRAS mutations were chosen as a model to demonstrate the advantages of the PG primers and blockers utilizing a customized PCR protocol. The methods were evaluated on plasmid model systems providing a KRAS mutation detection limit of 20 copies of mutant DNA in a proportion as low as 0.1% of the total DNA, with excellent specificity. PG-modification can serve as the universal additional mismatch-like disturbance to increase the discrimination between wild-type and mutated DNA. Moreover, PG can serve to increase primer specificity by a synergetic effect with additional mismatch and would greatly facilitate medical research.

17.
Anal Biochem ; 611: 113886, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32795455

ABSTRACT

Biosensors that rely on aptamers as analyte-recognizing elements (also known as aptasensors) are gaining in popularity during recent years for analytical and biomedical applications. Among them, colorimetric ELISA-like systems seem very promising for biomarker detection in medical diagnostics. For their development, one should thoroughly consider the characteristics of the aptamers, with a particular focus on the secondary structure. In this study, we performed an in-depth structural study of previously selected hemoglobin-binding 2'-F-RNA aptamers using CD spectroscopy, enzymatic probing, and specific fluorophore binding. Only a combination of different assays allowed us to prove G-quadruplex formation for anti-hemoglobin 2'-F-RNA aptamers. We also demonstrated a possible application of these 2'-F-RNA aptamers for microplate colorimetric detection of human hemoglobin in both direct and sandwich formats.


Subject(s)
Aptamers, Nucleotide/chemistry , G-Quadruplexes , Hemoglobins/chemistry , Animals , Cattle , Colorimetry , Humans
18.
Molecules ; 25(16)2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32796768

ABSTRACT

Biological activity of antisense oligonucleotides (asON), especially those with a neutral backbone, is often attenuated by poor cellular accumulation. In the present proof-of-concept study, we propose a novel delivery system for asONs which implies the delivery of modified antisense oligonucleotides by so-called transport oligonucleotides (tON), which are oligodeoxyribonucleotides complementary to asON conjugated with hydrophobic dodecyl moieties. Two types of tONs, bearing at the 5'-end up to three dodecyl residues attached through non-nucleotide inserts (TD series) or anchored directly to internucleotidic phosphate (TP series), were synthesized. tONs with three dodecyl residues efficiently delivered asON to cells without any signs of cytotoxicity and provided a transfection efficacy comparable to that achieved using Lipofectamine 2000. We found that, in the case of tON with three dodecyl residues, some tON/asON duplexes were excreted from the cells within extracellular vesicles at late stages of transfection. We confirmed the high efficacy of the novel and demonstrated that MDR1 mRNA targeted asON delivered by tON with three dodecyl residues significantly reduced the level of P-glycoprotein and increased the sensitivity of KB-8-5 human carcinoma cells to vinblastine. The obtained results demonstrate the efficacy of lipophilic oligonucleotide carriers and shows they are potentially capable of intracellular delivery of any kind of antisense oligonucleotides.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Drug Delivery Systems , Neoplasms/drug therapy , Oligonucleotides, Antisense/genetics , RNA, Messenger/antagonists & inhibitors , Vinblastine/pharmacology , ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B/genetics , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/chemistry , Humans , Neoplasms/genetics , Neoplasms/pathology , RNA, Messenger/genetics , Tumor Cells, Cultured , Vinblastine/administration & dosage , Vinblastine/chemistry
19.
Data Brief ; 29: 105188, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32071971

ABSTRACT

This article reports experimental data related to the research article entitled "Prevention of DNA multimerization using phosphoryl guanidine primers during isothermal amplification with Bst exo- DNA polymerase" (R.R. Garafutdinov, A.R. Sakhabutdinova, M.S. Kupryushkin, D.V. Pyshnyi, 2020) [1]. Here, multimerization efficiency in terms of Tt (time-to-threshold) values obtained for artificial DNA templates with the different nucleotide sequences during isothermal amplification with Bst exo- DNA polymerase is given. Data on the influence of phosphoryl guanidine primers (PGO) on multimerization for the LTc template which has shown high efficiency of multimerization are presented as well.

20.
Biochimie ; 168: 259-267, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31765671

ABSTRACT

Over the last two decades, isothermal amplification of nucleic acids has gained more attention due to a number of advantages over the widely used polymerase chain reaction. For isothermal amplification, DNA polymerases with strand-displacement activity are needed, and Bst exo- polymerase is one of the most commonly used. Unfortunately, Bst exo- causes nonspecific DNA amplification (so-called multimerization) under isothermal conditions that results in undesirable products (multimers) consisting of tandem nucleotide repeats. Multimerization occurs only for short ssDNA or primer dimers, and the efficiency of multimerization depends significantly on the reaction conditions, but slightly depends on the sequence of DNA templates. In this study we report the prevention of DNA multimerization using a new type of modified oligonucleotide primers with internucleosidic phosphates containing 1,3-dimethyl-2-imino-imidazolidine moieties (phosphoryl guanidine (PG) groups). Primers with one, two or three PG groups located at the 3'- or 5'-ends or in the middle of the primers were designed. It turned out, such bulky groups interfere with the moving of Bst exo- polymerase along DNA chains. However, one modified phosphate does not notably affect the efficiency of polymerization, and the elongation is completely inhibited only when three contiguous modifications occur. Multimerization of the linear ssDNA templates is blocked by three modifications in the middle of both primers whereas specific amplification of the circular ssDNA by rolling circle amplification is not inhibited. Thus, incorporation of three PG groups is sufficient to prevent multimerization and allows to create improved primers for reliable isothermal amplification with Bst exo- DNA polymerase.


Subject(s)
DNA, Circular/metabolism , DNA-Directed DNA Polymerase/metabolism , Nucleic Acid Amplification Techniques/methods , Oligonucleotides/metabolism , DNA Replication , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...