Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 188
Filter
1.
Crit Rev Immunol ; 44(5): 41-50, 2024.
Article in English | MEDLINE | ID: mdl-38618727

ABSTRACT

Gene therapy is a particularly useful treatment for nervous system genetic diseases, including those induced especially by infectious organisms and antigens, and is being utilized to treat Hodgkin's disease (HD). Due to the possible clonal relationship between both disorders, immunotherapy directed against CD20 positive cells may be a more effective treatment in patients with persistent HD and NHL. HL growth can be inhibited both in vitro and in vivo by AdsIL-13Ralpha2. High-dose treatment combined with stem cell transplantation has been effective in treating HIV-negative lymphoma that has progressed to high-risk or relapsed disease. For therapy, LMP2-specific CTL will be used. Furthermore, it is possible to view the cytotoxicity of genetically modified adenoviruses that express proteins such as p27Kip1, p21Waf1, and p16INK4A as a foundational element for (2,5)-derived ALCL genetic treatment for Hodgkin's disease.


Subject(s)
Hematopoietic Stem Cell Transplantation , Hodgkin Disease , Humans , Hodgkin Disease/genetics , Hodgkin Disease/therapy , Immunotherapy
2.
Nanoscale Adv ; 6(6): 1750-1764, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38482029

ABSTRACT

Nano-carbon-reinforced polymer composites have gained much consideration in functional applications due to their attractive mechanical strength and cost-effectiveness. The surface chemistry and associated mechanical strength of carbon nanotubes (CNTs), graphene, and other carbon derivative-based nanocomposites are well understood. While CQDs are considered emerging carbon derivatives, their surface chemistry, unique physio-chemical properties, and dispersion behavior in polymers are yet to be explored. Therefore, in this work, CQDs with different structures were synthesized from lemon pulp and urea, and their rheology and mechanical strength were studied in the PVA matrix. The surface chemistry and structure of CQDs were controlled using different solvents and reaction temperatures, respectively. CQDs possessed a circular shape, with a size of <10 nm, having a suitable carbon core and functional groups, as confirmed by TEM and FTIR spectroscopy. The dynamic viscosity and particle size of PVA/CQDs films peaked at 4% inclusion due to the maximum crosslinking of U-CQDs with reinforcement at 180 °C. Compared with pure PVA, the optimized composite showed an 80% larger particle size with 67% better tensile strength at 4% U-CQDs concentration. In addition to enhanced mechanical strength, CQDs exhibited antibacterial activity in composites. These CQDs-reinforced PVA composites may be suitable for different functional textile applications (shape memory composites and photo-active textiles).

3.
Chemosphere ; 353: 141565, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423145

ABSTRACT

The growing global population has led to a heightened need for food production, and this rise in agricultural activity is closely tied to the application of phosphorus-based fertilizers, which contributes to the depletion of rock phosphate (RP) reserves. Considering the limited P reserves, different approaches were conducted previously for P removal from waste streams, while the adsorption of ions is a novel strategy with more applicability. In this study, a comprehensive method was employed to recover phosphorus from wastewater by utilizing biochar engineered with minerals such as calcium, magnesium, and iron. Elemental analysis of the wastewater following a batch experiment indicated the efficiency of the engineered biochar as an adsorbent. Subsequently, the phosphorus-enriched biochar, hereinafter (PL-BCsb), obtained from the wastewater, underwent further analysis through FTIR, XRD, and nutritional assessments. The results revealed that the PL-BCsb contained four times higher (1.82%) P contents which further reused as a fertilizer supplementation for Brassica napus L growth. PL-BCsb showed citric acid (34.03%), Olsen solution (10.99%), and water soluble (1.74%) P desorption. Additionally, phosphorous solubilizing bacteria (PSB) were incorporated with PL-BCsb along two P fertilizer levels P45 (45 kg ha-1) and P90 (90 kg ha-1) for evaluation of phosphorus reuse efficiency. Integrated application of PL-BCsb with half of the suggested amount of P45 (45 kg ha-1) and PSB increased growth, production, physiological, biochemical, and nutritional qualities of canola by almost two folds when compared to control. Similarly, it also improved soil microbial biomass carbon up to four times, alkaline and acid phosphatases activities both by one and half times respectively as compared to control P (0). Furthermore, this investigation demonstrated that waste-to-fertilizer technology enhanced the phosphorus fertilizer use efficiency by 55-60% while reducing phosphorus losses into water streams by 90%. These results have significant implications for reducing eutrophication, making it a promising approach for mitigating environmental pollution and addressing climate change.


Subject(s)
Brassica napus , Phosphorus , Phosphorus/analysis , Wastewater , Fertilizers/analysis , Phosphates/chemistry , Bacteria , Charcoal/chemistry , Soil/chemistry , Nutrients/analysis , Water/analysis
4.
RSC Adv ; 14(9): 5959-5974, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38362070

ABSTRACT

Heavy metal contamination in water is a serious environmental issue due to the toxicity of metals like lead. This study developed zeolite and multi-walled carbon nanotube (MWCNT) incorporated polyacrylonitrile (PAN) nanofibers via needleless electrospinning and examined their potential for lead ion adsorption from aqueous solutions. The adsorption process was optimized using response surface methodology (RSM) and artificial neural network (ANN) modeling approaches. The adsorbent displayed efficient lead removal of 84.75% under optimum conditions (adsorbent dose (2.21 g), adsorption time (207 min), temperature (48 °C), and initial concentration (62 ppm)). Kinetic studies revealed that the adsorption followed pseudo-first-order kinetics governed by interparticle diffusion. Isotherm analysis indicated Langmuir monolayer adsorption with improved 5.90 mg g-1 capacity compared to pristine PAN nanofibers. Thermodynamic parameters suggested the adsorption was spontaneous and endothermic. This work demonstrates the promise of electrospun zeolite/MWCNT nanofibers as adsorbents for removing lead from wastewater.

5.
Sensors (Basel) ; 24(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203117

ABSTRACT

For amputees, amputation is a devastating experience. Transfemoral amputees require an artificial lower limb prosthesis as a replacement for regaining their gait functions after amputation. Microprocessor-based transfemoral prosthesis has gained significant importance in the last two decades for the rehabilitation of lower limb amputees by assisting them in performing activities of daily living. Commercially available microprocessor-based knee joints have the needed features but are costly, making them beyond the reach of most amputees. The excessive cost of these devices can be attributed to custom sensing and actuating mechanisms, which require significant development cost, making them beyond the reach of most amputees. This research contributes to developing a cost-effective microprocessor-based transfemoral prosthesis by integrating off-the-shelf sensing and actuating mechanisms. Accordingly, a three-level control architecture consisting of top, middle, and low-level controllers was developed for the proposed prosthesis. The top-level controller is responsible for identifying the amputee intent and mode of activity. The mid-level controller determines distinct phases in the activity mode, and the low-level controller was designed to modulate the damping across distinct phases. The developed prosthesis was evaluated on unilateral transfemoral amputees. Since off-the-shelf sensors and actuators are used in i-Inspire, various trials were conducted to evaluate the repeatability of the sensory data. Accordingly, the mean coefficients of correlation for knee angle, force, and inclination were computed at slow and medium walking speeds. The obtained values were, respectively, 0.982 and 0.946 for knee angle, 0.942 and 0.928 for knee force, and 0.825 and 0.758 for knee inclination. These results confirmed that the data are highly correlated with minimum covariance. Accordingly, the sensors provide reliable and repeatable data to the controller for mode detection and intent recognition. Furthermore, the knee angles at self-selected walking speeds were recorded, and it was observed that the i-Inspire Knee maintains a maximum flexion angle between 50° and 60°, which is in accordance with state-of-the-art microprocessor-based transfemoral prosthesis.


Subject(s)
Activities of Daily Living , Knee Joint , Humans , Knee Joint/surgery , Lower Extremity , Amputation, Surgical , Microcomputers
6.
Crit Rev Eukaryot Gene Expr ; 34(1): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-37824388

ABSTRACT

Destruction of the tumor (cancerous) cells may be caused by live viruses, which have replicative ability and replicate selectively in tumor cells, known as oncolytic virotherapy. In comparison of conservative cancer therapy, tumor-selective replicating viruses have more advantages. These viruses have introduced new methodologies for the human cancer treatment. Numerous strategies are used in development of virotherapeutics. Virotherapy is not unusual concept, but modern advances in technology of genetic modification of oncolytic viruses have improved the ability of targeting tumor cells more specifically, it triggered the development of novel ammunition to fight cancer. An effective virotherapeutic approach with oncolytic viruses exhibits the feasibility and safety under clinical approach. New strategies are being explored to overcome basic obstacles and challenges in virotherapy. Administration of oncolytic viruses, logically, will successfully augment new treatments against many kinds of tumors. Some encouraging antitumor responses shown by combination therapy are provoking strong immunity against established cancer. Chief developments in oncolytic virotherapy have seen in past several years. Significant understandings have been provided by findings on the interface among immune comebacks and viruses, whereas potential results have shown in clinical trials.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Oncolytic Virotherapy/methods , Neoplasms/therapy , Oncolytic Viruses/genetics , Combined Modality Therapy
7.
Crit Rev Eukaryot Gene Expr ; 34(2): 15-31, 2024.
Article in English | MEDLINE | ID: mdl-38073439

ABSTRACT

In this review, there is a complete description of the classes of arboviruses, their evolutionary process, virus characterization, disease transmission methods; it also describes about the vectors involved in transmission and their mood of transmission, both biologically as well as non-biologically and, about host, the resistance mechanism in host, and artificial methods of preventing those viral transmissions. Arboviruses transmitted to hosts by some vectors such as mosquitoes, ticks, etc. The virus replicates in the host can be prevented by some host resistance mechanisms like RNA interference (RNAi), which degrade virus RNA by its antiviral activity, insect repellents, IGRs, and PI technology.


Subject(s)
Arboviruses , Humans , Animals , Arboviruses/genetics , Virus Replication , RNA Interference , Biological Evolution , Mosquito Vectors
8.
Crit Rev Eukaryot Gene Expr ; 34(2): 1-13, 2024.
Article in English | MEDLINE | ID: mdl-38073438

ABSTRACT

Neuroblastoma is a malignant tumor of neuroblasts, immature nerve cells found in several areas of the body. It usually affects children under age of 5. As usual, the tumor has ability to grow rapidly and to expand vastly which ultimately leads to death. Mostly, management decisions can be drawn by the prediction of the stage of the disease as well as age at the time of its diagnosis. There are four main stages of neuroblastoma, and treatment is according to the low and high risk of the disease. Several cytotoxic agents along with other therapies (antibody therapy, gene therapy, and even immunological therapies, antiangiogenic therapy, etc.) are used. Immunotherapy also has an important treatment option used nowadays for neuroblastoma. The discovery of major neuroblastoma-predisposition gene anaplastic lymphoma kinase cause somatic transformation or gene strengthening in diagnosed neuroblastoma. Promising new antiangiogenic strategies have also been introduced for the treatment of neuroblastoma with multiple mylomas. To manage numerous myelomas and cancers, including neuroblastoma, bone marrow transplantation and peripheral blood stem cell transplantation may be used.


Subject(s)
Neuroblastoma , Humans , Neuroblastoma/genetics , Neuroblastoma/therapy , Neuroblastoma/pathology
9.
ACS Omega ; 8(48): 46165-46181, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38075833

ABSTRACT

The search for novel drug scaffolds that can improve effectiveness and safety through drug conjugates is a promising approach. Consequently, drug conjugates constitute a dynamic field of study and advancement within medicinal chemistry. This research demonstrates the conjugation of diclofenac and mefenamic acid with sulfa drugs and their screening for urease inhibition. These conjugates' structural confirmation was performed using elemental analysis and spectroscopic methods, including IR, 1H NMR, and 13C NMR. Diclofenac conjugated with sulfanilamide (4), sulfacetamide (10), and mefenamic acid conjugated with sulfanilamide (12), and sulfamethoxazole (17) was found potent and demonstrated urease inhibition competitively, with IC50 (µM) values 3.59 ± 0.07, 5.49 ± 0.34, 7.92 ± 0.27, and 8.35 ± 0.26, respectively. Diclofenac conjugated with sulfathiazole (6), sulfamerazine (8), and sulfaguanidine (11), while mefenamic acid conjugated with sulfisoxazole (13), sulfathiazole (14), and sulfadiazine (15) exhibited a mixed mode of urease inhibition. The IC50 (µM) values were 16.19 ± 0.21, 9.50 ± 0.28, 4.35 ± 0.23, 15.86 ± 0.25, 14.80 ± 0.27, and 7.92 ± 0.27, respectively. Furthermore, molecular docking studies were employed to predict the binding pose of competitive inhibitors at the urease active site. These conjugates generated stable complexes with the urease protein observed through molecular dynamics (MD) simulations, where no conformational changes occurred throughout the simulations. These results highlight the potential for approved therapeutic molecule conjugates to give rise to new categories of pharmacological agents for urease inhibition. The structural similarity of sulfonamides with urea allows them to compete with urea for binding to the active site of the urease enzyme. Sulfonamides and nonsteroidal anti-inflammatory drugs (NSAIDs) can interact hydrophobically with the active site of the urease enzyme, which may disturb its structure and catalytic activity. Therefore, these conjugates may be helpful in the development of novel pharmacological agents for the treatment of a variety of illnesses in which the urease enzyme is involved.

10.
Crit Rev Immunol ; 43(3): 15-24, 2023.
Article in English | MEDLINE | ID: mdl-37824374

ABSTRACT

Oral candidiasis is a common but most harmful oral cavity infection caused by yeast-like fungus, this condition is called Oropharyngeal candidiasis. There are various species of candida that are responsible for oral cavity fungal infection including mostly Candida albicans. Different candida infections may be acute and chronic. Cell-mediated immunity, humoral immunity, and granulocytes are the immune factors for the cause of this infection. Different antifungal drugs like nystatin, fluconazole, and amphotericin are used to treat oral cavity fungal infections.


Subject(s)
Candidiasis, Oral , Candidiasis , Humans , Candidiasis, Oral/drug therapy , Candidiasis, Oral/etiology , Antifungal Agents/therapeutic use , Fluconazole/therapeutic use , Candidiasis/drug therapy , Candidiasis/etiology , Candida albicans
11.
Heliyon ; 9(9): e20007, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809450

ABSTRACT

Dual-core yarns, containing two filaments within the core of the yarn, have gained increasing commercial and research interest recently, especially in denim manufacturing. The use of multi-components in dual-core yarns allows for tailoring the properties of the yarn and denim fabric. The type of filaments and fibers and their surface characteristics play a role in fiber-to-fiber cohesion within yarn structure. However, little has been reported regarding the effect of different filaments on the properties of dual-core yarns. The objective of this study was to investigate the effect of three different filaments, T400, polyester flat (PET flat) and polyester textured (PET textured) as well as two yarn structures, siro versus non-siro, on tensile, elastic and other properties of dual-core yarns at same twist level and linear density of the yarn. The results showed that the siro spun dual-core yarn containing T400 exhibited 25% higher tenacity compared with yarns containing other filaments. However, the plastic deformation of the yarn containing PET flat filament, having a higher initial modulus, was at a relatively lower level compared with T400 and PET textured. Overall, the siro yarn structure showed lower imperfections and higher tenacity compared with the non-siro yarn structure. The dual-core yarn containing T400 showed a higher level of moisture wicking compared with other filaments which can add to the comfort properties but a similar hairiness level. The findings of this study suggest that the use of a filament with a higher initial modulus can improve the stretch and recovery behavior of the dual-core yarns.

12.
Plants (Basel) ; 12(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687319

ABSTRACT

The demand for a better agricultural productivity and the available phosphorus (P) limitation in plants are prevailing worldwide. Poor P availability due to the high pH and calcareous nature of soils leads to a lower P fertilizer use efficiency of 10-25% in Pakistan. Among different technologies, the use of biologically acidified amendments could be a potential strategy to promote soil P availability and fertilizer use efficiency (FUE) in alkaline calcareous soils. However, this study hypothesized that an acidified amendment could lower soil pH and solubilize the insoluble soil P that plants can potentially uptake and use to improve their growth and development. For this purpose, the test plant Zea mays was planted in greenhouse pots with a recommended dose rate of 168 kg ha-1 of P for selected phosphatic fertilizers, viz., DAP (diammonium phosphate), SSP (single superphosphate), and RP (rock phosphate) with or without 2% of the acidified product and a phosphorus solubilizing Bacillus sp. MN54. The results showed that the integration of acidified amendments and PSB strain MN54 with P fertilizers improved P fertilizer use efficiency (FUE), growth, yield, and P uptake of Zea mays as compared to sole application of P fertilizers. Overall, organic material along with DAP significantly improved plant physiological-, biochemical-, and nutrition-related attributes over the sole application of DAP. Interestingly, the co-application of RP with the acidified product and MN54 showed a higher response than the sole application of DAP and SSP. However, based on our study findings, we concluded that using RP with organic amendments was a more economically and environmentally friendly approach compared to the most expensive DAP fertilizer. Taken together, the current study suggests that the use of this innovative new strategy could have the potential to improve FUE and soil P availability via pH manipulation, resulting in an improved crop productivity and quality/food security.

13.
J Biomol Struct Dyn ; : 1-15, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37643014

ABSTRACT

To explore the new mode of action and reduce side effects, making conjugates of existing drugs is becoming an attractive tool in the realm of medicinal chemistry. In this work, we exploited this approach and synthesized new conjugates to assess their activities against the enzymes involved in different pathological conditions. Specifically, we design and synthesized conjugates involving acetylsalicylic acid and sulfa drugs, validating the newly crafted conjugates using techniques like IR, 1HNMR, 13CNMR, and elemental analysis. These conjugates underwent assessment for their ability to inhibit cyclooxygenase-2 (COX-2), urease enzymes, and their anti-inflammatory potential. A competitive mode of urease inhibition was observed for acetylsalicylic acid conjugated with sulfanilamide, sulfacetamide, and sulfadiazine with IC50 of 2.49 ± 0.35 µM, 6.21 ± 0.28 µM, and 6.57 ± 0.44 µM, respectively. Remarkably, the acetylsalicylic acid-sulfamethoxazole conjugate exhibited exceptional anti-inflammatory activity, effectively curtailing induced edema by 83.7%, a result akin to the reference anti-inflammatory drug indomethacin's performance (86.8%). Additionally, it demonstrated comparable COX-2 inhibition (75.8%) to the reference selective COX-2 inhibitor celecoxib that exhibited 77.1% inhibition at 10 µM concentration. To deepen our understanding, we employed molecular docking techniques to predict the binding interactions of competitive inhibitors with COX-2 and urease receptors. Additionally, MD simulations were carried out, confirming the stability of inhibitor-target complexes throughout the simulation period, devoid of significant conformational changes. Collectively, our research underscores the potential of coupling approved medicinal compounds to usher in novel categories of pharmacological agents, holding promise for addressing a wide spectrum of pathological disorders involving COX-2 and urease enzymes.Communicated by Ramaswamy H. Sarma.

14.
Front Chem ; 11: 1206380, 2023.
Article in English | MEDLINE | ID: mdl-37601915

ABSTRACT

Derivative synthesis has been a crucial method for altering the effects of already-approved medications, especially to lessen adverse effects and enhance results. Making use of this multi-target approach, a series of naproxen-sulfa drug conjugates was designed and synthesized. The newly designed conjugates were confirmed by spectroscopic techniques like IR, 1HNMR, 13CNMR, and elemental analysis. The conjugates were screened for anti-inflammatory, urease, and cyclooxygenase-2 (COX-2) inhibition. Naproxen conjugated with sulfanilamide, sulfathiazole, and sulfaguanidine was found potent and showed a competitive mode of urease inhibition, with IC50 (µM) values 6.69 ± 0.11, 5.82 ± 0.28, 5.06 ± 0.29, respectively. When compared to other screened conjugates, the naproxen-sulfamethoxazole conjugation showed better anti-inflammatory action by inhibiting induced edema by 82.8%, which is comparable to the medication indomethacin (86.8% inhibition). Whereas it exhibited 75.4% inhibition of COX-2 at 10 µM concentration which is comparable with the reference drug (celecoxib, 77.1% inhibition). Moreover, the binding modes of competitive inhibitors with the urease and COX-2 receptor were predicted through molecular docking studies and their stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and there were no conformational changes that occurred during simulation. The obtained results showed that the conjugates of approved therapeutic molecules may lead to the development of novel types of pharmacological agents in the treatment of several pathological disorders where urease and COX-2 enzymes are involved.

15.
Crit Rev Eukaryot Gene Expr ; 33(8): 1-10, 2023.
Article in English | MEDLINE | ID: mdl-37606160

ABSTRACT

AIDS dementia complex (ADC) is a nervous system disorder that harms the neurons in different parts of the brain. Various features are involved in altering the normal activities of neurons. Neurotoxicity is induced due to HIV viral proteins such as gp120, SDF, Tat, etc. These proteins target macrophages, glial cells, astrocytes, and release neurotoxins. These neurotoxins proved harmful for the neurons, caused apoptotic cell death by raising calcium, glutamate level and by producing various free radicals such as nitric oxide (NO·). Lipid peroxidation and lipids rafts also play a vital role in producing toxicity and apoptotic cell death. Membrane associated oxidative stress, cognitive impairment, and high level of HNE (4-hydroxynonenal); all are involved in ADC pathogenesis.


Subject(s)
AIDS Dementia Complex , Acquired Immunodeficiency Syndrome , Humans , Neurotoxins , Acquired Immunodeficiency Syndrome/complications , Brain , Apoptosis
16.
Molecules ; 28(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37513261

ABSTRACT

The development of novel scaffolds that can increase the effectiveness, safety, and convenience of medication therapy using drug conjugates is a promising strategy. As a result, drug conjugates are an active area of research and development in medicinal chemistry. This research demonstrates acetamide-sulfonamide scaffold preparation after conjugation of ibuprofen and flurbiprofen with sulfa drugs, and these scaffolds were then screened for urease inhibition. The newly designed conjugates were confirmed by spectroscopic techniques such as IR, 1HNMR, 13CNMR, and elemental analysis. Ibuprofen conjugated with sulfathiazole, flurbiprofen conjugated with sulfadiazine, and sulfamethoxazole were found to be potent and demonstrated a competitive mode of urease inhibition, with IC50 (µM) values of 9.95 ± 0.14, 16.74 ± 0.23, and 13.39 ± 0.11, respectively, and urease inhibition of 90.6, 84.1, and 86.1% respectively. Ibuprofen conjugated with sulfanilamide, sulfamerazine, and sulfacetamide, whereas flurbiprofen conjugated with sulfamerazine, and sulfacetamide exhibited a mixed mode of urease inhibition. Moreover, through molecular docking experiments, the urease receptor-binding mechanisms of competitive inhibitors were anticipated, and stability analysis through MD simulations showed that these compounds made stable complexes with the respective targets and that no conformational changes occurred during the simulation. The findings demonstrate that conjugates of approved therapeutic molecules may result in the development of novel classes of pharmacological agents for the treatment of various pathological conditions involving the urease enzyme.


Subject(s)
Flurbiprofen , Molecular Docking Simulation , Flurbiprofen/pharmacology , Ibuprofen/pharmacology , Enzyme Inhibitors/pharmacology , Sulfacetamide , Kinetics , Urease , Sulfamerazine , Canavalia , Structure-Activity Relationship , Sulfanilamide , Sulfonamides/pharmacology , Molecular Structure
17.
J Environ Manage ; 344: 118529, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37418912

ABSTRACT

Organic matter decomposition is a biochemical process with consequences affecting climate change and ecosystem productivity. Once decomposition begins, C is lost as CO2 or sequestered into more recalcitrant carbon difficult to further degradation. As microbial respiration releases carbon dioxide into the atmosphere, microbes act as gatekeepers in the whole process. Microbial activities were found to be the second largest CO2 emission source in the environment after human activities (industrialization), and research investigations suggest that this may have affected climate change over the past few decades. It is crucial to note that microbes are major contributors in the whole C cycle (decomposition, transformation, and stabilization). Therefore, imbalances in the C cycle might be causing changes in the entire carbon content of the ecosystem. The significance of microbes, especially soil bacteria in the terrestrial carbon cycle requires more attention. This review focuses on the factors that affect microorganism behavior during the breakdown of organic materials. The key factors affecting the microbial degradation processes are the quality of the input material, nitrogen, temperature, and moisture content. In this review, we suggest that to address global climate change and its effects on agricultural systems and vice versa, there is a need to double-up on efforts and conduct new research studies to further evaluate the potential of microbial communities to reduce their contribution to terrestrial carbon emission.


Subject(s)
Ecosystem , Microbiota , Humans , Carbon Dioxide/analysis , Agriculture , Soil/chemistry , Climate Change , Soil Microbiology
18.
Plant Physiol Biochem ; 201: 107826, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37331076

ABSTRACT

A rhizobacterium, Pantoea conspicua, was examined against sunflower seedlings' growth under arsenate stress. Sunflower upon exposure to arsenate resulted in compromised growth that might be due to the accumulation of higher concentrations of arsenate and reactive oxygen species (ROS) in seedlings' tissues. The deposited arsenate led to oxidative damage and electrolyte leakage, making the sunflower seedlings vulnerable to compromise its growth and development. However, inoculation of sunflower seedlings with P. conspicua alleviated arsenate stress in host by initiating a multilayered defence mechanism. In fact, P. conspicua filtered out 75.1% of the arsenate from growth medium that were available to the plant roots in the absence of the said strain. To accomplish such activity, P. conspicua secreted exopolysaccharides as well as altered lignification in host roots. The arsenate (24.9%) that made its way to plant tissues was countered by helping the host seedlings to produce higher levels of indole acetic acid, non enzymatic antioxidants (phenolics and flavonoids) and antioxidant enzymes (catalase, ascorbte peroxidase, peroxidase, superoxide dismutase). As a result, ROS accumulation and electrolyte leakage were brought back to normal levels as observed in control seedlings. Hence, the rhizobacterium associated host seedlings achieved higher net assimilation (127.7%) and relative growth rate (113.5%) under 100 ppm of arsenate stress. The work concluded that P. conspicua alleviated arsenate stress in the host plants by imposing physical barrier as well as improving host seedlings' physiology and biochemistry.


Subject(s)
Arsenates , Helianthus , Helianthus/metabolism , Reactive Oxygen Species , Antioxidants/metabolism , Oxidative Stress , Superoxide Dismutase/metabolism , Seedlings/metabolism , Plant Roots/metabolism
19.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37049240

ABSTRACT

Nanoscale surface roughness has conventionally been induced by using complicated approaches; however, the homogeneity of superhydrophobic surface and hazardous pollutants continue to have existing challenges that require a solution. As a prospective solution, a novel bubbled-structured silica nanoparticle (SiO2) decorated electrospun polyurethane (PU) nanofibrous membrane (SiO2@PU-NFs) was prepared through a synchronized electrospinning and electrospraying process. The SiO2@PU-NFs nanofibrous membrane exhibited a nanoscale hierarchical surface roughness, attributed to excellent superhydrophobicity. The SiO2@PU-NFs membrane had an optimized fiber diameter of 394 ± 105 nm and was fabricated with a 25 kV applied voltage, 18% PU concentration, 20 cm spinning distance, and 6% SiO2 nanoparticles. The resulting membrane exhibited a water contact angle of 155.23°. Moreover, the developed membrane attributed excellent mechanical properties (14.22 MPa tensile modulus, 134.5% elongation, and 57.12 kPa hydrostatic pressure). The composite nanofibrous membrane also offered good breathability characteristics (with an air permeability of 70.63 mm/s and a water vapor permeability of 4167 g/m2/day). In addition, the proposed composite nanofibrous membrane showed a significant water/oil separation efficiency of 99.98, 99.97, and 99.98% against the water/xylene, water/n-hexane, and water/toluene mixers. When exposed to severe mechanical stresses and chemicals, the composite nanofibrous membrane sustained its superhydrophobic quality (WCA greater than 155.23°) up to 50 abrasion, bending, and stretching cycles. Consequently, this composite structure could be a good alternative for various functional applications.

20.
Angew Chem Int Ed Engl ; 62(31): e202301497, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-36912737

ABSTRACT

Ionic liquids (ILs) are considered to be potential material devices for CO2 capturing and conversion to energy-adducts. They form a cage (confined-space) around the catalyst providing an ionic nano-container environment which serves as physical-chemical barrier that selectively controls the diffusion of reactants, intermediates, and products to the catalytic active sites via their hydrophobicity and contact ion pairs. Hence, the electronic properties of the catalysts in ILs can be tuned by the proper choice of the IL-cations and anions that strongly influence the residence time/diffusion of the reactants, intermediates, and products in the nano-environment. On the other hand, ILs provide driving force towards photocatalytic redox process to increase the CO2 photoreduction. By combining ILs with the semiconductor, unique solid semiconductor-liquid commodities are generated that can lower the CO2 activation energy barrier by modulating the electronic properties of the semiconductor surface. This mini-review provides a brief overview of the recent advances in IL assisted thermal conversion of CO2 to hydrocarbons, formic acid, methanol, dimethyl carbonate, and cyclic carbonates as well as its photo-conversion to solar fuels.

SELECTION OF CITATIONS
SEARCH DETAIL
...