Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Publication year range
1.
Sci Rep ; 14(1): 16724, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030288

ABSTRACT

Nuclear reaction cross sections for the formation of 72As and 71As in proton-induced reactions on enriched 72Ge targets were measured up to 45 MeV utilizing three different cyclotrons at the Forschungszentrum Jülich. The stacked-thin sample activation technique in combination with high-resolution γ-ray spectrometry was used. The major γ-ray peaks of 72As and 71As formed via the 72Ge(p,n)72As and 72Ge(p,2n)71As reactions, respectively, were analyzed. The incident proton energy and flux on a foil were determined using several monitor reactions. Based on integrated counts, irradiation data and the nuclear decay data, the reaction cross sections were measured. All data describe the first measurements. Theoretical nuclear model calculations were then carried out by using the codes TALYS 1.96, EMPIRE 3.2 and ALICE-IPPE. A very good agreement between the measured data and calculated values was found. The new data enabled us to calculate the thick target yields and estimate the radionuclidic impurities for a given energy range. Over the optimum energy range Ep = 14 → 7 MeV, the calculated thick target yield of 72As amounts to 272 MBq/µAh with no 71As impurity at all. The 72Ge(p,n)72As reaction on the enriched 72Ge is thus very suitable for clinical scale production of 72As at a medical cyclotron.

2.
Front Chem ; 11: 1270351, 2023.
Article in English | MEDLINE | ID: mdl-37841203

ABSTRACT

Copper has several clinically relevant radioisotopes and versatile coordination chemistry, allowing attachment of its radionuclides to biological molecules. This characteristic makes it suitable for applications in molecular imaging or radionuclide targeted therapy. Of particular interest in nuclear medicine today is the theranostic approach. This brief review considers five radionuclides of copper. These are Cu-60, Cu-61, Cu-62, Cu-64, and Cu-67. The first four are positron emitters for imaging, and the last one Cu-67 is a ß--emitting radionuclide suitable for targeted therapy. The emphasis here is on theory-aided evaluation of available experimental data with a view to establishing standardised cross-section database for production of the relevant radionuclide in high purity. Evaluated cross section data of the positron emitters have been already extensively reported; so here they are only briefly reviewed. More attention is given to the data of the 68Zn(p,2p)67Cu intermediate energy reaction which is rather commonly used for production of 67Cu.

3.
Molecules ; 27(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35164033

ABSTRACT

The ß+-emitting radionuclide 86gY (t1/2 = 14.7 h) forms a matched-pair with the ß--emitting therapeutic radionuclide 90Y (t1/2 = 2.7 d) for theranostic application in medicine. This approach demands a precise knowledge of the positron emission probability of the PET nuclide which was until recently rather uncertain for 86gY. In this work, an 86gY source of high radionuclidic purity was prepared and a direct measurement of the positron emission intensity per 100 decay of the parent (hereafter "positron emission intensity") was performed using high-resolution HPGe detector γ-ray spectroscopy. The electron capture intensity was also determined as an additional check by measuring the Kα and Kß X-rays of energies 14.1 and 15.8 keV, respectively, using a low energy HPGe detector. From those measurements, normalized values of 27.2 ± 2.0% for ß+-emission and 72.8 ± 2.0% for EC were obtained. These results are in excellent agreement with values recently reported in the literature based on a detailed decay scheme study.


Subject(s)
Positron-Emission Tomography/methods , Radiometry/methods , Radiopharmaceuticals/chemistry , Yttrium Radioisotopes/chemistry , Gamma Rays , Spectrum Analysis/methods
4.
J Labelled Comp Radiopharm ; 61(3): 126-140, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29110328

ABSTRACT

Medical radionuclide production technology is well established. There is, however, a constant need for further development of radionuclides. The present efforts are mainly devoted to nonstandard positron emitters (eg, 64 Cu, 86 Y, 124 I, and 73 Se) and novel therapeutic radionuclides emitting low-range ß- particles (eg, 67 Cu and 186 Re), conversion or Auger electrons (eg, 117m Sn and 77 Br), and α particles (eg, 225 Ac). A brief account of various aspects of development work (ie, nuclear data, targetry, chemical processing, and quality control) is given. For each radionuclide under consideration, the status of technology for clinical scale production is discussed. The increasing need of intermediate-energy multiple-particle accelerating cyclotrons is pointed out.


Subject(s)
Nuclear Medicine/methods , Radioisotopes/chemistry , Radiopharmaceuticals/chemical synthesis , Radioisotopes/therapeutic use , Radiopharmaceuticals/therapeutic use
5.
Pharmaceuticals (Basel) ; 10(2)2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28632200

ABSTRACT

In the context of radiopharmacy and molecular imaging, the concept of theranostics entails a therapy-accompanying diagnosis with the aim of a patient-specific treatment. Using the adequate diagnostic radiopharmaceutical, the disease and the state of the disease are verified for an individual patient. The other way around, it verifies that the radiopharmaceutical in hand represents a target-specific and selective molecule: the "best one" for that individual patient. Transforming diagnostic imaging into quantitative dosimetric information, the optimum radioactivity (expressed in maximum radiation dose to the target tissue and tolerable dose to healthy organs) of the adequate radiotherapeutical is applied to that individual patient. This theranostic approach in nuclear medicine is traced back to the first use of the radionuclide pair 86Y/90Y, which allowed a combination of PET and internal radiotherapy. Whereas the ß-emitting therapeutic radionuclide 90Y (t½ = 2.7 d) had been available for a long time via the 90Sr/90Y generator system, the ß⁺ emitter 86Y (t½ = 14.7 h) had to be developed for medical application. A brief outline of the various aspects of radiochemical and nuclear development work (nuclear data, cyclotron irradiation, chemical processing, quality control, etc.) is given. In parallel, the paper discusses the methodology introduced to quantify molecular imaging of 86Y-labelled compounds in terms of multiple and long-term PET recordings. It highlights the ultimate goal of radiotheranostics, namely to extract the radiation dose of the analogue 90Y-labelled compound in terms of mGy or mSv per MBq 90Y injected. Finally, the current and possible future development of theranostic approaches based on different PET and therapy nuclides is discussed.

6.
Nucl Med Biol ; 44: 31-49, 2017 01.
Article in English | MEDLINE | ID: mdl-27821344

ABSTRACT

INTRODUCTION: The significance of nuclear data in the choice and medical application of a radionuclide is considered: the decay data determine its suitability for organ imaging or internal therapy and the reaction cross section data allow optimisation of its production route. A brief discussion of reaction cross sections and yields is given. STANDARD RADIONUCLIDES: The standard SPECT, PET and therapeutic radionuclides are enumerated and their decay and production data are considered. The status of nuclear data is generally good. Some existing discrepancies are outlined. A few promising alternative production routes of 99mTc and 68Ga are discussed. RESEARCH-ORIENTED RADIONUCLIDES: The increasing significance of non-standard positron emitters in organ imaging and of low-energy highly-ionizing radiation emitters in internal therapy is discussed, their nuclear data are considered and a brief review of their status is presented. Some other related nuclear data issues are also mentioned. PRODUCTION OF RADIONUCLIDES USING NEWER TECHNOLOGIES: The data needs arising from new directions in radionuclide applications (multimode imaging, theranostic approach, radionanoparticles, etc.) are considered. The future needs of data associated with possible utilization of newer irradiation technologies (intermediate energy cyclotron, high-intensity photon accelerator, spallation neutron source, etc.) are outlined. CONCLUSION: Except for a few small discrepancies, the available nuclear data are sufficient for routine production and application of radionuclides. Considerable data needs exist for developing novel radionuclides for applications. The developing future technologies for radionuclide production will demand further data-related activities.


Subject(s)
Nuclear Medicine/methods , Radioisotopes/chemistry , Animals , Humans , Radiochemistry , Radioisotopes/therapeutic use
7.
PLoS One ; 9(4): e95250, 2014.
Article in English | MEDLINE | ID: mdl-24755872

ABSTRACT

Simultaneous, hybrid MR-PET is expected to improve PET image resolution in the plane perpendicular to the static magnetic field of the scanner. Previous papers have reported this either by simulation or experiment with simple sources and detector arrangements. Here, we extend those studies using a realistic brain phantom in a recently installed MR-PET system comprising a 9.4 T MRI-scanner and an APD-based BrainPET insert in the magnet bore. Point and line sources and a 3D brain phantom were filled with 18F (low-energy positron emitter), 68Ga (medium energy positron emitter) or 120I, a non-standard positron emitter (high positron energies of up to 4.6 MeV). Using the BrainPET insert, emission scans of the phantoms were recorded at different positions inside and outside the magnet bore such that the magnetic field was 0 T, 3 T, 7 T or 9.4 T. Brain phantom images, with the 'grey matter' compartment filled with 18F, showed no obvious resolution improvement with increasing field. This is confirmed by practically unchanged transaxial FWHM and 'grey/white matter' ratio values between at 0T and 9.4T. Field-dependent improvements in the resolution and contrast of transaxial PET images were clearly evident when the brain phantom was filled with 68Ga or 120I. The grey/white matter ratio increased by 7.3% and 16.3%, respectively. The greater reduction of the FWTM compared to FWHM in 68Ga or 120I line-spread images was in agreement with the improved contrast of 68Ga or 120I images. Notwithstanding elongations seen in the z-direction of 68Ga or 120I point source images acquired in foam, brain phantom images show no comparable extension. Our experimental study confirms that integrated MR-PET delivers improved PET image resolution and contrast for medium- and high-energy positron emitters even though the positron range is reduced only in directions perpendicular to the magnetic field.


Subject(s)
Brain/diagnostic imaging , Magnetic Fields , Magnetic Resonance Imaging , Positron-Emission Tomography , Contrast Media , Electrons , Fluorine Radioisotopes , Gallium Radioisotopes , Humans , Iodine Radioisotopes , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL