Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Lab Chip ; 24(7): 1867-1874, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38487919

ABSTRACT

Microfluidic lab-on-a-chip technologies enable the analysis and manipulation of small fluid volumes and particles at small scales and the control of fluid flow and transport processes at the microscale, leading to the development of new methods to address a broad range of scientific and medical challenges. Microfluidic and lab-on-a-chip technologies have made a noteworthy impact in basic, preclinical, and clinical research, especially in hematology and vascular biology due to the inherent ability of microfluidics to mimic physiologic flow conditions in blood vessels and capillaries. With the potential to significantly impact translational research and clinical diagnostics, technical issues and incentive mismatches have stymied microfluidics from fulfilling this promise. We describe how accessibility, usability, and manufacturability of microfluidic technologies should be improved and how a shift in mindset and incentives within the field is also needed to address these issues. In this report, we discuss the state of the microfluidic field regarding current limitations and propose future directions and new approaches for the field to advance microfluidic technologies closer to translation and clinical use. While our report focuses on using blood as the prototypical biofluid sample, the proposed ideas and research directions can be extrapolated to other areas of hematology, oncology, biology, and medicine.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Microfluidics/methods , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Translational Research, Biomedical
2.
Cell Genom ; 3(10): 100401, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37868038

ABSTRACT

Each human genome has tens of thousands of rare genetic variants; however, identifying impactful rare variants remains a major challenge. We demonstrate how use of personal multi-omics can enable identification of impactful rare variants by using the Multi-Ethnic Study of Atherosclerosis, which included several hundred individuals, with whole-genome sequencing, transcriptomes, methylomes, and proteomes collected across two time points, 10 years apart. We evaluated each multi-omics phenotype's ability to separately and jointly inform functional rare variation. By combining expression and protein data, we observed rare stop variants 62 times and rare frameshift variants 216 times as frequently as controls, compared to 13-27 times as frequently for expression or protein effects alone. We extended a Bayesian hierarchical model, "Watershed," to prioritize specific rare variants underlying multi-omics signals across the regulatory cascade. With this approach, we identified rare variants that exhibited large effect sizes on multiple complex traits including height, schizophrenia, and Alzheimer's disease.

4.
Circ Genom Precis Med ; 12(12): e002746, 2019 12.
Article in English | MEDLINE | ID: mdl-31752505

ABSTRACT

Leveraging emerging opportunities in data science to open new frontiers in heart, lung, blood, and sleep research is one of the major strategic objectives of the National Heart, Lung, and Blood Institute (NHLBI), one of the 27 Institutes/Centers within the National Institutes of Health (NIH). To assess NHLBI's recent funding of research grants in data science and to identify its relative areas of focus within data science, a portfolio analysis from fiscal year 2008 to fiscal year 2017 was performed. In this portfolio analysis, an efficient and reliable methodology was used to identify data science research grants by utilizing several NIH databases and search technologies (iSearch, Query View Reporting system, and IN-SPIRE [Pacific Northwest National Laboratory, Richland, WA]). Six hundred thirty data science-focused extramural research grants supported by NHLBI were identified using keyword searches based primarily on NIH's working definitions of bioinformatics and computational biology. Further analysis characterized the distribution of these grants among the heart, lung, blood, and sleep disease areas as well as the subtypes of data science projects funded by NHLBI. Information was also collected for data science research grants funded by other NIH institutes/centers using the same search and analysis methodology. The funding comparison among different NIH institutes/centers highlighted relative data science areas of emphasis and further identified opportunities for potential data science areas in which NHLBI could foster research advances.


Subject(s)
Biomedical Research/economics , Data Science/economics , Financing, Organized/statistics & numerical data , Biomedical Research/statistics & numerical data , Data Science/statistics & numerical data , Financing, Organized/economics , Humans , National Heart, Lung, and Blood Institute (U.S.)/economics , National Heart, Lung, and Blood Institute (U.S.)/statistics & numerical data , United States
5.
Adv Exp Med Biol ; 844: 395-9, 2014.
Article in English | MEDLINE | ID: mdl-25480652

ABSTRACT

A systems approach to blood diseases can help make essential contributions to our ability to diagnose, treat, and perhaps even prevent common diseases in humans. Using blood as a window, one can study health and disease through this unique tool box with reactive biological fluids that mirrors the prevailing hemodynamics of the vessel walls and the various blood cell types. Many blood diseases, rare and common, can and have been exploited using systems biology approaches with successful results and therefore ideal models for systems medicine. More importantly, hematopoiesis offers one of the best studied systems with insight into stem cell biology, cellular interaction, development; linage programming and reprogramming that are influenced every day by the most mature and understood regulatory networks.


Subject(s)
Hematologic Diseases/diagnosis , Hematologic Diseases/therapy , Systems Biology/methods , Hematopoiesis/physiology , Humans
6.
Front Physiol ; 4: 299, 2013.
Article in English | MEDLINE | ID: mdl-24298257

ABSTRACT

The National Heart, Lung, and Blood Institute (NHLBI) has recognized the importance of the systems biology approach for understanding normal physiology and perturbations associated with heart, lung, blood, and sleep diseases and disorders. In 2006, NHLBI announced the Exploratory Program in Systems Biology program, followed in 2010 by the NHLBI Systems Biology Collaborations program. The goal of these programs is to support collaborative teams of investigators in using experimental and computational strategies to integrate the component parts of biological networks and pathways into computational models that are based firmly on and validated using experimental data. These validated models are then applied to gain insights into the mechanisms of altered system function in disease, to generate novel hypotheses regarding these mechanisms that can be tested experimentally, and to then use the results of experiments to refine the models. This perspective reviews the history of dedicated systems biology programs at NHLBI and reviews some promising directions for future research in this area.

10.
J Med Virol ; 71(2): 173-82, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12938190

ABSTRACT

Lentiviral vectors are prime candidate vectors for gene transfer into dividing and non-dividing cells, including neuronal cells and stem cells. For safety, HIV-2 lentiviral vectors may be better suited for gene transfer in humans than HIV-1 lentiviral vectors. HIV-2 vectors cross-packaged in HIV-1 cores may be even safer. Demonstration of the efficacy of these vectors in disease models will validate their usefulness. Parkinson's disease and Fabry disease provide excellent models for validation. Parkinson's disease is a focal degeneration of dopaminergic neurons in the brain with progressive loss of ability to produce the neurotransmitter dopamine. Current treatment entails administration of increasing doses of L-dopa, with attendant toxicity. We explore here the hypothesis that gene transfer of aromatic acid decarboxylase (AADC), a key enzyme in the pathway, will make neuronal cells more efficiently convert L-dopa into dopamine. Fabry disease on the other hand is a monogenic inherited disease, characterized by alpha-galactosidase A (AGA) deficiency, resulting in glycolipid accumulation in several cell types, including fibroblasts. Animal models for preclinical investigations of both of these diseases are available. We have designed monocistronic HIV-1 and HIV-2 vectors with the AADC transgene and monocistronic and bicistronic HIV-2 vectors with the AGA and puromycin resistance transgenes. They were packaged with either HIV-2 cores or HIV-1 cores (hybrid vectors). Gene transfer of AADC gene in neuronal cells imparted the ability on the transduced cells to efficiently convert L-dopa into dopamine. Similarly, the AGA vectors induced Fabry fibroblasts to produce high levels of AGA enzyme and caused rapid clearance of the glycolipids from the cells. Both monocistronic and bicistronic vectors were effective. Thus, the insertion of a second gene downstream in the bicistronic vector was not deleterious. In addition, both the self-packaged vectors and the cross-packaged hybrid vectors were effective in gene transfer.


Subject(s)
Fibroblasts/virology , Gene Transfer Techniques , Genetic Vectors , HIV-1/genetics , HIV-2/genetics , Neurons/virology , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Cells, Cultured , Fabry Disease/physiopathology , Fibroblasts/enzymology , Genetic Therapy/methods , Humans , Models, Biological , Neurons/enzymology , Parkinson Disease/physiopathology , Transduction, Genetic , Transgenes , alpha-Galactosidase/genetics , alpha-Galactosidase/metabolism
11.
Proc Natl Acad Sci U S A ; 100(6): 3450-4, 2003 Mar 18.
Article in English | MEDLINE | ID: mdl-12624185

ABSTRACT

Fabry disease is an X-linked recessive inborn metabolic disorder characterized by systemic and vascular accumulation of globotriaosylceramide (Gb(3)) caused by a deficiency of the lysosomal enzyme alpha-galactosidase A (alpha-gal A). The condition is associated with an increased morbidity and mortality due to renal failure, cardiac disease, and early onset of stroke. Hemizygous males are primarily affected clinically with variable expression in heterozygous females. Gene-therapy trials have been initiated recently in alpha-gal A knockout mouse models of Fabry disease by using a variety of viral vectors. In the present investigation we administered single i.v. injections of 1 x 10(10) genomes of recombinant adeno-associated virus (rAAV) encoding the human alpha-gal A gene driven by a modified chicken beta-actin (CAG) promoter to alpha-gal A knockout (Fabry) mice. Transgenic mice were analyzed for expression of alpha-gal A activity and Gb(3) levels in liver, kidney, heart, spleen, small intestine, lung, and brain. Administration of the rAAV-CAG-hAGA vector resulted in stable expression of alpha-gal A in organs of the Fabry mice for >6 months. alpha-Gal A activity in the organs became equal to or higher than that of wild-type mice. Accumulated Gb(3) in the liver, heart, and spleen was reduced to that of wild-type mice with lesser but significant reductions in kidney, lung, and small intestine. Injection of the rAAV-CAG-hAGA construct into skeletal muscle did not result in expression of alpha-gal A in it or in other tissues. This study provides a basis for a simple and efficient gene-therapy approach for patients with Fabry disease and is indicative of its potential for the treatment of other lysosomal storage disorders.


Subject(s)
Fabry Disease/metabolism , Fabry Disease/therapy , Trihexosylceramides/metabolism , Animals , Antibody Formation , Dependovirus/genetics , Fabry Disease/genetics , Female , Gene Expression , Genetic Therapy , Genetic Vectors , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , alpha-Galactosidase/genetics , alpha-Galactosidase/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...