Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(3): e25414, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38352784

ABSTRACT

In this study, chitosan nanoparticles (CSNPs) encapsulating Foeniculum vulgare (FV) seed extract (SE) were prepared for the controlled delivery of bioactive phytoconstituents. The prepared CSNPs encapsulating FVSE as sustain-releasing nanoconjugate (CSNPs-FVSE) was used as a potent source of functional metabolites including kaempferol and quercetin for accelerated reclamation of sensory and motor functions following peripheral nerve injury (PNI). The nanoconjugate exhibited in vitro a biphasic diffusion-controlled sustained release of quercetin and kaempferol ensuring prolonged therapeutic effects. The CSNPs-FVSE was administered through gavaging to albino mice daily at a dose rate of 25 mg/kg body weight from the day of induced PNI till the end of the experiment. The conjugate-treatment induced a significant acceleration in the regain of motor functioning, evaluated from the sciatic function index (SFI) and muscle grip strength studies. Further, the hotplate test confirmed a significantly faster recuperation of sensory functions in conjugate-treated group compared to control. An array of underlying biochemical pathways regulates the regeneration under well-optimized glucose and oxidant levels. Therefore, oxidant status (TOS), blood glycemic level and total antioxidant capacity (TAC) were evaluated in the conjugate-treated group and compared with the controls. The treated subjects exhibited controlled oxidative stress and regulated blood sugars compared to the non-treated control. Thus, the nanoconjugate enriched with polyphenolics significantly accelerated the regeneration and recovery of functions after nerve lesions. The biocompatible nanocarriers encapsulating the nontoxic natural bioactive constitutents have great medicinal and economic value.

2.
Environ Sci Pollut Res Int ; 31(6): 8917-8929, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38182953

ABSTRACT

Over-accumulating salts in soil are hazardous materials that interfere with the biochemical pathways in growing plants drastically affecting their physiological attributes, growth, and productivity. Soil salinization poses severe threats to highly-demanded and important crops directly challenging food security and sustainable productivity. Recently, there has been a great demand to exploit natural sources for the development of nontoxic nanoformulations of growth enhancers and stress emulators. The chitosan (CS) has growth-stimulating properties and widespread use as nanocarriers, while curcumin (CUR) has a well-established high ROS scavenging potential. Herein, we use CS and CUR for the preparation of CSNPs encapsulating CUR as an ecofriendly nanopriming agent. The hydroprimed, nanoprimed (0.02 and 0.04%), and unprimed (control) wheat seeds were germinated under salt stress (150 mM NaCl) and normal conditions. The seedlings established from the aforementioned seeds were employed for germination studies and biochemical analyses. Priming imprints mitigated the ionic toxicity by upregulating the machinery of antioxidants (CAT, POD, APX, and SOD), photosynthetic pigments (Chl a, Chl b, total Chl, and lycopene), tannins, flavonoids, and protein contents in wheat seedlings under salt stress. It controlled ROS production and avoided structural injuries, thus reducing MDA contents and regulating osmoregulation. The nanopriming-induced readjustments in biochemical attributes counteracted the ionic toxicity and positively influenced the growth parameters including final germination, vigor, and germination index. It also reduced the mean germination time, significantly validating the growth-stimulating and stress-emulating role of the prepared nanosystem. Hence, the nanopriming conferred tolerance against salt stress during germination and seedling development, ensuring sustainable growth.


Subject(s)
Chitosan , Curcumin , Nanoparticles , Seedlings/metabolism , Triticum , Chitosan/metabolism , Curcumin/metabolism , Reactive Oxygen Species/metabolism , Germination , Soil , Seeds
3.
Heliyon ; 9(12): e21571, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38076184

ABSTRACT

The utilization of thermally activated delayed fluorescence (TADF) materials in highly proficient organic light-emitting diodes (OLEDs) has attracted much attention. Based on TADF material TPA-QNX(CN)2, a series of three-dimensional donor-acceptor (D-A) triptycenes have been designed via structural modification of D-fragment. The influences of different D-fragments with various electron-donating strengths on the singlet-triplet energy gap (ΔEST), emission wavelength (λem), and electron/hole reorganization energy (λe/λh) are extensively studied by applying density functional theory (DFT) coupled with time-dependent density functional theory (TD-DFT). The computed results imply that as the electron-donating strength of the D-fragments increases, the ΔEST value decreases and λem is red-shifted for the molecules using the same acceptor units. Analogously, the 1CT‒3CT state splitting (ΔEST (CT)) is also decreased by enlarging the twist angle (ß) between the phenyl ring and alternative D-fragment. Therefore, efficient color tuning within a broad emission range (434-610 nm), as well as small ΔEST (CT) values (0.01-0.05 eV), has been accomplished by structural modification of the D-fragments. The greater electron-donating strength, the smaller ΔEST, and the smaller λh for PPXZ-QNX(CN)2 make it the best candidate among all the designed molecules.

4.
Sci Prog ; 106(3): 368504231188610, 2023.
Article in English | MEDLINE | ID: mdl-37469182

ABSTRACT

The purpose of this research is to evaluate the colouring performance of Amba Haldi-based natural extracted yellowish colour for the dyeing of wool fabric using ultrasonic (US) treatments. Before and after the US treatment, the colourant was separated in aqueous and acidic solutions for up to 60 min. Scanning electron microscopy and Fourier-transform infrared spectroscopy were used to investigate the surface morphology and chemical changes in the cloth before and after radiation. On the wool fabric that was ultrasonically treated at 75°C for 45 min, an acidic extract of Amba Haldi powder after US treatment for 20 min showed good colour depth (K/S). Acacia extract (2%), pomegranate extract (1.5%) and pistachio extract (1%), when used as pre-biomordants, were shown to have excellent colour strength. Acacia (1.5%) extract, pomegranate (2%) extract and pistachio (1.5%) extract were also used as post-biomordants. As pre-chemical mordants, Al salts (1%), Fe salts (1.5%) and tannic acid salts (2%), whereas Al salts (2%), Fe salts (1%) and tannic acid salts (2%), have produced successful results as post-chemical mordants. Overall, it was discovered that pomegranate extract (2%), used as a post-bio-mordant, and salt of Fe (1.5%), used as a post-chemical mordant, both exhibit exceptional colour strength. Ultrasonic treatment, a procedure that is harmless for the environment, has only served to increase the colour strength of dye on wool fabric, and the addition of bio-mordants has made the process more sustainable.

5.
J Trace Elem Med Biol ; 79: 127234, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37302218

ABSTRACT

BACKGROUND: Colorectal tumor is a major cause of cancer morbidity and mortality both in USA and around the globe. Exposure to environmental toxicants such as toxic trace elements has been implicated in colorectal malignancy. However, data linking them to this cancer are generally lacking. METHODS: Accordingly, the current study was to investigate the distribution, correlation and chemometric evaluation of 20 elements (Ca, Na, Mg, K, Zn, Fe, Ag, Co, Pb, Sn, Ni, Cr, Sr, Mn, Li, Se, Cd, Cu, Hg and As) in the tumor tissues (n = 147) and adjacent non tumor tissues (n = 147) of same colorectal patients which were analyzed by flame atomic absorption spectrophometry employing nitric acid-perchloric acid based wet digestion method. RESULTS: On the average, Zn (p < 0.05), Ag (p < 0.001), Pb (p < 0.001), Ni (p < 0.01), Cr (p < 0.005) and Cd (p < 0.001) showed significantly higher levels in the tumor tissues compared with the non tumor tissues of patients, whereas mean levels of Ca (p < 0.01), Na (p < 0.05), Mg (p < 0.001), Fe (p < 0.001), Sn (p < 0.05) and Se (p < 0.01), were significantly elevated in the non tumor tissues than the tissues of tumor patients. Most of the elements revealed markedly disparities in their elemental levels based on food (vegetarian/nonvegetarian) habits and smoking (smoker/nonsmoker) habits of donor groups. The correlation study and multivariate statistical analyses demonstrated some significantly divergent associations and apportionment of the elements in the tumor tissues and non tumor tissues of donors. Noticeably, variations in the elemental levels were also noted for colorectal tumor types (lymphoma, carcinoids tumor and adenocarcinoma) and stages (I, II, III, & IV) in patients. CONCLUSION: Overall, the study revealed that disproportions in essential and toxic elemental concentrations in the tissues are involved in pathogenesis of the malignancy. These findings provide the data base that helps to oncologist for diagnosis and prognosis of colorectal malignant patients.


Subject(s)
Colorectal Neoplasms , Trace Elements , Humans , Pakistan , Cadmium/analysis , Lead/analysis , Multivariate Analysis , Trace Elements/analysis
6.
RSC Adv ; 13(18): 11982-11999, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37077261

ABSTRACT

Two novel benzimidazole ligands (E)-2-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)-6-bromo-4-chlorophenol (L1) and (E)-1-((4-(1H-benzo[d]imidazole-2-yl)phenylimino)methyl)naphthalene-2-ol (L2) with their corresponding Cu(ii), Ni(ii), Pd(ii) and Zn(ii) complexes were designed and synthesized. The compounds were characterized by elemental, IR, and NMR (1H & 13C) spectral analyses. Molecular masses were determined by ESI-mass spectrometry, and the structure of ligand L1 was confirmed by single crystal X-ray diffraction analysis. Molecular docking was carried out for the theoretical investigation of DNA binding interactions. The results obtained were verified experimentally by UV/Visible absorption spectroscopy in conjunction with DNA thermal denaturation studies. It was observed that ligands (L1 and L2) and complexes (1-8) were moderate to strong DNA binders, as evident from the binding constants (K b). The value was found to be highest for complex 2 (3.27 × 105 M-1) and lowest for 5 (6.40 × 103 M-1). A cell line study revealed that breast cancer cells were less viable to the synthesized compounds compared to that of standard drugs, cisplatin and doxorubicin, at the same concentration. The compounds were also screened for in vitro antibacterial activity for which complex 2 showed a promising broad-spectrum effect against all tested strains of bacteria, almost in the proximity of the reference drug kanamycin, while the rest of the compounds displayed activity against selected strains.

7.
Molecules ; 27(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36431778

ABSTRACT

In the present work, sulfur-doped manganese ferrites S@Mn(Fe2O4) nanoparticles were prepared by using the sol-gel and citrate method. The concentration of sulfur varied from 1 to 7% by adding Na2S. The samples were characterized by performing Fourier Transformed Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) and Ultraviolet-Visible spectroscopy (UV-Visible). The synthesized sulfur-doped manganese ferrites were applied to evaluate the photocatalytic degradation of the dyes. Further, the degradation studies revealed that the nanoparticles successfully degraded the methylene blue dye by adding a 0.006 g dose under the sunlight. The sulfur-doped manganese ferrite nanoparticles containing 3% sulfur completely degraded the dye in 2 h and 15 min in aqueous medium. Thus, the ferrite nanoparticles were found to be promising photocatalyst materials and could be employed for the degradation of other dyes in the future.


Subject(s)
Nanoparticles , Sunlight , Manganese/chemistry , Catalysis , Nanoparticles/chemistry , Coloring Agents/chemistry , Cations , Sulfur
8.
Article in English | MEDLINE | ID: mdl-36429397

ABSTRACT

The contamination of toxic trace metals in the food chain is one of the major threats to human health. Milk is part of a balanced diet, which is essential for proper growth, but the ingestion of contaminated milk may cause chronic health disorders. The present study is focused on the assessment of contamination of toxic trace metals in buffalo milk and the associated health risks to the consumers of Abbottabad, Pakistan. Standard analytical methods were employed to quantify the metal contents in the milk samples collected from various shops and homes in the months from June 2021 to October 2021. Health risk assessment was accomplished by computing estimated daily intake (EDI), health risk index (HRI), target hazard quotient (THQ), hazard index (HI), and target cancer risk (TCR). On a comparative basis, the mean concentration of Cr was found to be highest in both shop and home milk samples (101.3 ± 45.33 and 54.11 ± 24.20 mg/L, respectively), followed by Pb, Zn, Ni, and Cd levels. In buffalo milk collected from homes, the highest concentration of the metals was found in October, followed by July, September, June, and August. In shop milk, the increasing trend of metal contents was July > October > September > June > August. Significantly strong positive relationships were noted between the metal concentrations in the milk samples. Multivariate cluster analysis and principal component analysis exhibited significant anthropogenic contributions of the metals in buffalo milk. Mostly, the EDI and HRI values were exceeding the recommended limits; however, THQ, HI, and TCR showed that the intake of these metals through milk consumption was within the safe limit and thus revealed no significant carcinogenic or non-carcinogenic risks to the consumers. It is high time to ensure the continuous monitoring of organic/inorganic toxins in the milk and concerned authorities should take strict measures to control the contamination of milk and other food products.


Subject(s)
Metals, Heavy , Trace Elements , Animals , Humans , Milk/chemistry , Buffaloes , Metals, Heavy/analysis , Trace Elements/analysis , Risk Assessment , Receptors, Antigen, T-Cell
9.
Molecules ; 27(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36296569

ABSTRACT

Tungsten trioxide (WO3) is mainly studied as an electrochromic material and received attention due to N-type oxide-based semiconductors. The magnetic, structural, and optical behavior of pristine WO3 and gadolinium (Gd)-doped WO3 are being investigated using density functional theory. For exchange-correlation potential energy, generalized gradient approximation (GGA+U) is used in our calculations, where U is the Hubbard potential. The estimated bandgap of pure WO3 is 2.5 eV. After the doping of Gd, some states cross the Fermi level, and WO3 acts as a degenerate semiconductor with a 2 eV bandgap. Spin-polarized calculations show that the system is antiferromagnetic in its ground state. The WO3 material is a semiconductor, as there is a bandgap of 2.5 eV between the valence and conduction bands. The Gd-doped WO3's band structure shows few states across the Fermi level, which means that the material is metal or semimetal. After the doping of Gd, WO3 becomes the degenerate semiconductor with a bandgap of 2 eV. The energy difference between ferromagnetic (FM) and antiferromagnetic (AFM) configurations is negative, so the Gd-doped WO3 system is AFM. The pure WO3 is nonmagnetic, where the magnetic moment in the system after doping Gd is 9.5599575 µB.

10.
Molecules ; 27(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36296596

ABSTRACT

Agarose (AG) is a naturally occurring biocompatible marine seaweed extract that is converted to hydrocolloid gel in hot water with notable gel strength. Currently, its mucoadhesion properties have not been fully explored. Therefore, the main aim of this study was to evaluate the mucoadhesive potential of AG binary dispersions in combination with Carbopol 934P (CP) as mucoadhesive gel preparations. The gels fabricated via homogenization were evaluated for ex vivo mucoadhesion, swelling index (SI), dissolution and stability studies. The mucoadhesive properties of AG were concentration dependent and it was improved by the addition of CP. Maximum mucoadhesive strength (MS) (27.03 g), mucoadhesive flow time (FT) (192.2 min), mucoadhesive time in volunteers (MT) (203.2 min) and SI (23.6% at 4 h) were observed with formulation F9. The mucoadhesive time investigated in volunteers (MT) was influenced by AG concentration and was greater than corresponding FT values. Formulations containing 0.3%, w/v AG (F3 and F9) were able to sustain the release (~99%) for both drugs till 3 h. The optimized formulation (F9) did not evoke any inflammation, irritation or pain in the buccal cavity of healthy volunteers and was also stable up to 6 months. Therefore, AG could be considered a natural and potential polymer with profound mucoadhesive properties to deliver drugs through the mucosal route.


Subject(s)
Mouth Mucosa , Polymers , Humans , Sepharose , Gels , Water
11.
Environ Sci Pollut Res Int ; 29(55): 83191-83210, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35763136

ABSTRACT

Esophageal cancer is a very deadly disease ranking 8th most common cancer in terms of incidence and the 6th highest in terms of mortality both in the USA and around the world. A growing body of evidence indicated that changes in the concentrations of essential and toxic elements may affect/increase esophagus carcinoma risk. The aim of this study was to measure serum levels of essential and toxic (Fe, Na, Ca, K, Zn, Mg, Co, Se, Cu, Ni, Mn, Sr, Pb, Li, Sb, Cr, Ag, Cd, As, and Hg) elements in patients with esophagus carcinoma and controls. Atomic absorption spectroscopy was used to determine serum concentrations of essential and toxic elements by using nitric acid/perchloric acid-based wet digestion method. Mean levels of Cu, Ni, Cr, Cd, Pb, As, and Ag were exhibited to be significantly higher and mean Se, Co, Zn, Ca, Fe, Hg, Li, and Mg were noted lower in the serum of cancer patients than controls. The correlation coefficients among the elements in the cancerous patients revealed significantly dissimilar communal relationships than the controls. Furthermore, multivariate methods demonstrated considerably different apportionment between the elements in the cancerous patients and the controls. Significant inequalities in the elemental concentrations were also observed for esophagus cancer types (adenocarcinoma and squamous cell carcinoma) and stages (I, II, III, and IV) between the patients. Majority of the elements exposed perceptible disparities in their levels based on smoking habits, dietary habits, habitat, and gender of the esophagus cancer patients and controls. Multivariate analysis of the essential and toxic elemental data explained significantly divergent apportionment in the serum of esophagus cancer patients when compared to controls.


Subject(s)
Esophageal Neoplasms , Mercury , Trace Elements , Humans , Trace Elements/analysis , Cadmium , Lead
12.
Biol Trace Elem Res ; 200(1): 31-48, 2022 Jan.
Article in English | MEDLINE | ID: mdl-33635516

ABSTRACT

Colorectal cancer (CRC) is currently one of the most frequent malignant neoplasms, ranking 3rd in incidence and 2nd in mortality both in the USA and across the world. The pathogenesis of CRC is a complex interaction between genetic susceptibility and environmental factors such as exposure to metals. Therefore, the present study was intended to assess the imbalances in the concentrations of selected essential/toxic elements (Pb, Cr, Fe, Zn, As, Cd, Cu, Se, Ni, and Hg) in the serum of newly diagnosed colorectal carcinoma patients (n = 165) in comparison with counterpart controls (n = 151) by atomic absorption spectrometry after wet-acid digestion method. Serum carcinoembryonic antigen (CEA) of the CRC patients was determined using immunoradiometric method. Body mass index (BMI) which is an established risk factor for CRC was also calculated for patients and healthy controls. Conversely, average Ni (2.721 µg/g), Cd (0.563 µg/g), As (0.539 µg/g), and Pb (1.273 µg/g) levels were significantly elevated in the serum of CRC patients compared to the healthy donors, while the average Se (7.052 µg/g), Fe (15.67 µg/g), Cu (2.033 µg/g), and Zn (8.059 µg/g) concentrations were elevated in controls. The correlation coefficients between the elements in the cancerous patients demonstrated significantly dissimilar communal relationships compared with the healthy subjects. Significant differences in the elemental levels were also showed for CRC types (primary colorectal lymphoma, gastrointestinal stromal tumor, and adenocarcinoma) and CRC stages (stage-I, stage-II, stage-III, and stage-IV) among the patients. Majority of the elements demonstrated perceptible disparities in their levels based on dietary, habitat, gender, and smoking habits of the malignant patients and healthy subjects. Multivariate methods revealed noticeably divergent apportionment among the toxic/essential elements in the cancerous patients than the healthy counterparts. Overall, the study showed significantly divergent distribution and associations of the essential and toxic elemental levels in the serum of the CRC patients in comparison with the healthy donors.


Subject(s)
Colorectal Neoplasms , Trace Elements , Humans , Metals , Smoking , Spectrophotometry, Atomic , Trace Elements/analysis
13.
Physiol Mol Biol Plants ; 27(9): 2057-2069, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34629778

ABSTRACT

Sweet basil (Ocimum basilicum L.), a well-known medicinal and aromatic herb, rich in essential oils and antioxidants (contributed by phenolics), is widely used in traditional medicine. The biosynthesis of phytochemicals occurs via different biochemical pathways, and the expression of selected genes encoding enzymes involved in the formation of phenolic compounds is regulated in response to environmental factors. The synthesis of the compounds is closely interrelated: usually, the products formed in the first reaction steps are used as substrates for the next reactions. The current study attempted a comprehensive overview of the effect of aromatic amino acid composition (AAAs) in Ocimum basilicum in respect to the expression of genes related to the biosynthesis of phenolic compound and their content. The transcript expression levels of EOMT, PAL, CVOMT, HPPR, C4L, EGS, and FLS increased depending on the AAAs concentration compared to the control plants. The highest mRNA accumulation was obtained in EOMT, FLS, and HPPR in the leaves of sweet basil. The expression of the TAT gene in the leaves significantly reduced in response to all AAAs applications compared to untreated groups and it had the lowest transcript accumulation. Eleven individual phenolic compounds were determined in the basil leaves, and the contents of chicoric acid, methyl chavicol, caffeic acid, and vanillic acid increased depending on administered concentration to control (p < 0.05). Additionally, AAAs lead to an incremental change in the amount of chlorogenic acid at 50 and 100 mg kg-1 compared to control plants (p < 0.05). Rutin and rosmarinic acid were detected as the main phenolic compounds in all experimental groups of sweet basil in terms of quantity. However, their amount significantly decreased as compared to control plants based on the increase in AAAs concentrations (p < 0.05). Also, the accumulation of cinnamic acid, eugenol, and quercetin did not significantly change in the leaves of AAAs treated plants compared to control (p < 0.05). When AAAs was applied, total flavonoid content increased in all treatments compared to the control plants, but total phenolic content did not change significantly (p < 0.05). To the best of our knowledge, our work is the first detailed work to evaluate in detail the impact of AAAs on individual phenolic compounds at the phytochemistry and transcriptional levels in the O. basilicum plant. For a detailed understanding of the whole mechanism of phenolic compound regulation, further research is required to fill in some gaps and to provide further clarification.

14.
Saudi J Biol Sci ; 28(4): 2291-2300, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33935567

ABSTRACT

To assess comparative losses of Trianthema portulacastrum (HP) relative to other weeds, the experiment was set during consecutive summer seasons 2018 and 2019 at the Research Farm MNS-University of Agriculture, Multan, Pakistan. Experiment consisted three replications which were laid out under randomized complete block design. Experiment consisted of ten treatments viz: weeds free (whole season), HP free till 20 Days after emergence (DAE), HP free till 40 DAE, HP free till 60 DAE, all weeds free 20 DAE, all weeds free 40 DAE, all weeds free 60 DAE, weedy check (all weeds), weedy check except HP and weedy check containing only HP. During 2018 in all weeds weedy check, maximum HP relative density (33.33%) was observed while in 2019, plot where weeds were controlled from growing till 20 DAE showed (80%) relative density at 30 DAE. HP maximum frequency (66.67%, 77.78%) and relative frequency (66%, 100%) was recorded at 45 DAE in plots where HP was kept controlled till 20 DAE and all weeds kept controlled till 20 DAE, respectively. Maximum number of grains per cob (738, 700.68), 1000 grain weight (306.66, 271.51 g) and grain yield (6150, 8015 kg hec-1) were recorded in plots which were kept all weed free till 60 DAE. As the competition period of weeds increased over 40 DAE, it substantially reduced yield of maize. Keeping the plots HP free till 40 DAE in the maize fields with HP as the major dominating weed, likely increase in maize grain yield is up to 30% compared to the fields where HP left un attended throughout the growing season. However, if maize field is infested with a mix of weeds with more than one dominating weeds including HP, compared to weedy situation the whole season, 30% higher grain yield can be obtained if all weeds are kept controlled till 40 DAE. Hence it can be concluded that whether the farmers face heavy HP infestation only or the mix of weeds as dominating weeds, in either case farmer should control weeds within first 40 days in maize field for better grain yield.

15.
Saudi J Biol Sci ; 28(4): 2453-2459, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33911958

ABSTRACT

Cadmium contamination in croplands is recognized one of the major threat, seriously affecting soil health and sustainable agriculture around the globe. Cd mobility in wastewater irrigated soils can be curtailed through eco-friendly and cost effective organic soil amendments (biochars) that eventually minimizes its translocation from soil to plant. This study explored the possible effects of various types of plants straw biochar as soil amendments on cadmium (Cd) phytoavailability in wastewater degraded soil and its subsequent accumulation in sunflower tissues. The studied biochars including rice straw (RS), wheat straw (WS), acacia (AC) and sugarcane bagasse (SB) to wastewater irrigated soil containing Cd. Sunflower plant was grown as a test plant and Cd accumulation was recorded in its tissues, antioxidant enzymatic activity chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM and Soluble Cd) were also examined. Results revealed that addition of biochar significantly minimized Cd mobility in soil by 53.4%, 44%, 41% and 36% when RS, WS, AC and SB were added at 2% over control. Comparing the control soil, biochar amended soil effectively reduced Cd uptake via plants shoots by 71.7%, 60.6%, 59% and 36.6%, when RS, WS, AC and SB. Among all the biochar, rice husk induced biochar significantly reduced oxidative stress and reduced SOD, POD and CAT activity by 49%, 40.5% and 46.5% respectively over control. In addition, NPK were significantly increased among all the added biochars in soil-plant system as well as improved chlorophyll contents relative to non-bioachar amended soil. Thus, among all the amendments, rice husk and wheat straw biochar performed well and might be considered the suitable approach for sunflower growth in polluted soil.

16.
Infect Genet Evol ; 91: 104811, 2021 07.
Article in English | MEDLINE | ID: mdl-33741510

ABSTRACT

Hepatitis C virus (HCV) is a heterogenetic infectious agent that affects a huge proportion of population around the globe. Diverse distribution of multiple subtypes of HCV makes it mandatory and remarkably imperative to understand the genotypic distribution in target population. It could serve as an indictive guideline for the improvement of diagnostic methodologies, and development of effective therapies against this viral infection, in order to improve the infected patients' quality of life. This study included HCV infected patients presented to the diagnostic facility of the Centre for Applied Molecular Biology, University of Punjab, Lahore, between 2016 and 2019. During the 4 years of study, samples were collected from 4177 subjects. Our data revealed no significant differences regarding the prevalence of various genotypes between genders in the adult population. Genotyping was carried out by following the Ohno protocol. The obtained results shown that genotype 3a is the most frequent genotype and accounts for 66.29% of cases. Among other genotypes, 1a is 2.11%, 1b is 0.07%, 3b is 1.89%, 5a is 0.02%, while genome of 28.23% patients was untypable; 1.22% of the samples were non-detectable as viremic. An important concern is that this untypable genome in HCV infected patients may indicate possible mutation of HCV.


Subject(s)
Genotype , Hepacivirus/genetics , Hepatitis C/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Hepatitis C/virology , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pakistan/epidemiology , Prevalence , Young Adult
17.
Luminescence ; 36(5): 1189-1197, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33759314

ABSTRACT

In this present investigation, thiazolylcoumarin derivatives (5a-5k) were synthesized from thiosemicarbazide, ethyl acetoacetate, and naphthaldehyde through a multistep route. The formation of thiazolylcoumarin derivatives with bioactive scaffolds was confirmed through nuclear magnetic resonance spectroscopy. A solvatochromic study of synthesized thiazolylcoumarin derivatives was carried out using ultraviolet-visible methods for dimethylformamide (DMF), ethyl acetate, and ethanol solvents. The redox behaviour of as-synthesized thiazolylcoumarin derivatives (5a-5k) was examined in dimethyl sulphoxide by conducting an electrochemical study. Fluorescence properties of thiazolylcoumarin derivatives were studied in DMF, ethanol, and ethyl acetate to visualize the solvent effect on the emitting ability of thiazolylcoumarin derivatives.


Subject(s)
Dimethyl Sulfoxide , Dimethylformamide , Ethanol , Solvents , Spectrometry, Fluorescence
18.
RSC Adv ; 11(4): 2025-2039, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-35424172

ABSTRACT

The in situ growth of well-dispersed Cd-doped ZnO nanoparticles (Cd-ZnO NPs) on graphitic carbon nitride (g-C3N4) nanosheets was successfully achieved through the co-precipitation method for the formation of Cd-doped ZnO nanocomposites with g-C3N4 (Cd-ZnO/g-C3N4 NCs). The effect of different compositions of ternary nanocomposites (Cd-ZnO/g-C3N4 NCs) on photocatalytic properties was investigated. Ternary NCs, in which 60% g-C3N4 hybridized with 7% Cd-doped ZnO (g-C3N4/Cd-ZnO) NCs were proven to be optimum visible-light-driven (VLD) photocatalysts for the degradation of methylene blue (MB) dye. The enhanced photodegradation of MB is mainly due to the increase in the generation of photogenerated charge carriers (reactive oxygen species (ROS), O2-, and ˙OH radicals). The electron spin resonance (ESR) experiment revealed that the superoxide and hydroxyl radicals were the leading species responsible for the degradation of MB. Moreover, the NC exhibited tremendous stability with a consistently high MB degradation rate for 10 successive catalytic cycles. The structural and optical properties of CdO, ZnO NPs, Cd-ZnO NPs, g-C3N4 NSs, and g-C3N4/Cd-ZnO NCs were investigated via XRD, SEM, EDX, TEM, FTIR spectroscopy, UV-Vis spectroscopy, ESR spectroscopy, and PL spectroscopy techniques. The synthesized photocatalysts were also applied against Gram-positive and Gram-negative bacterial strains to evaluate their antibacterial activities.

19.
Pak J Pharm Sci ; 33(1(Supplementary)): 299-306, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32122862

ABSTRACT

The present study was designed to develop novel lipid microparticles in order to improve solubility, dissolution and bioavailability of a lipophilic drug of BCS class II, lamotrigine. For that purpose, increase in solubility of the model drug was investigated using different lipids and the promising lipids were further used for the fabrication of microparticles. Solid lipid (GMS) and liquid lipid (olive oil) were used along with an emulsifier (Tween 80) and a stabilizer (Poloxamer 188) to prepare mircoparticles by melt emulsification method. Prepared formulations were characterized for physicochemical properties such as solubility, particle size, zeta potential, polydispersity index and entrapment efficiency. In vitro dissolution studies were carried out in 0.01 N HCl for 24 h. The findings provided that the solubility of lamotrigine was reasonably increased in GMS, olive oil, Tween 80 and poloxamer 180. The lamotrigine solubility was increased 4.92 fold with G4 microparticles formulation. Size analysis revealed that the microparticles were in range of 11.1 to 178.8 µm and the zeta potential values were from -13 to -20 mV. Microparticles prepared with solid and liquid lipids exhibited satisfactory entrapment efficiency ranging from 59 to 87%. Conclusively, the outcomes of the studies suggest the appropriateness of selected ingredients for improving solubility as well as loading of lamotrigine in microparticles for its sustained and effective delivery.


Subject(s)
Drug Carriers/chemistry , Lamotrigine/chemistry , Lipids/chemistry , Microspheres , Particle Size , Anticonvulsants/chemistry , Anticonvulsants/metabolism , Drug Carriers/metabolism , Lamotrigine/metabolism , Lipid Metabolism , Solubility
20.
Biol Trace Elem Res ; 194(1): 34-47, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31098833

ABSTRACT

Lymphoma arises from cells of the immune system and trace metals augment the immune system and their imbalance may promote immunological disorders including tumorigenesis. The primary aim of the present investigation was to evaluate the levels of essential/toxic trace metals in the nails of non-Hodgkin and Hodgkin lymphomas patients in comparison with controls. The samples collected from patients and controls were digested in the mixture of HNO3-HClO4 and selected trace metals were analysed using flame atomic absorption spectrometry. The results showed that mean concentrations of some elements (Pb, Ni, Cd, Cu and Cr) in nails of non-Hodgkin lymphoma patients were significantly elevated (p < 0.05) than that of the controls whereas mean contents of Pb, Cu, Cd and Cr were observed to be significantly higher in the nails of Hodgkin lymphoma patients compared with healthy donors. Additionally, correlation study pointed out significantly diverse mutual associations of the trace metals among the patients and controls. The present results revealed noticeable disparities in the metal concentrations based on gender, food habits, tobacco use and types/stages of the donor's groups. Overall, the pathogenesis of disease significantly affected the trace metal balance in both patients' groups.


Subject(s)
Hodgkin Disease/diagnosis , Lymphoma, Non-Hodgkin/diagnosis , Nails/chemistry , Trace Elements/analysis , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...