Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Carcinogenesis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38715543

ABSTRACT

Esophageal cancer is one of the most common malignant tumors, and the 5-year overall survival rate is only 20%. Esophageal squamous cell carcinoma (ESCC) is the primary histological type of esophageal carcinoma in China. Protein phosphatase 1 regulatory subunit 18 (PPP1r18) is one of the actin-regulatory proteins and is able to bind to protein phosphatase 1 catalytic subunit alpha (PPP1CA). Yet, little is known about the role of PPP1r18 in esophageal squamous cell carcinoma (ESCC). This study aimed to elucidate the biological functions of PPP1r18 in the ESCC progression. Clinical samples first confirmed that PPP1r18 expression was upregulated in ESCC, and PPP1r18 was correlated with tumor invasion depth, lymph node metastasis, distant metastasis, and reduced overall survival. We then observed that PPP1r18 overexpression enhanced cell proliferation in vitro and in vivo. Mechanistically, PPP1r18 regulated tumor progression of ESCC through activating the calcineurin-mediated ERK pathway, rather than binding to PPP1CA. Collectively, our results suggest that PPP1r18 promotes ESCC progression by regulating the calcineurin-mediated ERK pathway. PPP1r18 might be a potential target for the diagnosis and treatment of ESCC.

2.
Cell Signal ; 118: 111148, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38521179

ABSTRACT

Hepatocellular carcinoma (HCC) is the major form of liver malignancy with high incidence and mortality. Identifying novel biomarkers and understanding regulatory mechanisms underlying the development and progression of HCC are critical for improving diagnosis, treatment and patient outcomes. Carboxyl terminus of Hsc-70-interacting protein (CHIP) is a well-described U-box-type E3 ubiquitin ligase which promotes the ubiquitination and degradation of numerous tumor-associated proteins. Recent studies have shown that CHIP can play as a tumor-suppressor gene or an oncogene in different kinds of malignancies. To date, the function and mechanism of CHIP in hepatocellular carcinoma remains largely unknown. Based on TCGA data, we found that compared with high CHIP expression, the overall survival of HCC patients with low expression of CHIP was better. In addition, CHIP overexpression markedly enhanced HCC cell proliferation and colony formation. Conversely, knockdown of CHIP restrained the proliferation and colony formation of HCC cells. Meanwhile, knockdown of CHIP decreased mitochondrial cristae or ruptured outer mitochondrial membrane, promoted the accumulation of Fe2+ and ferroptosis of HCC cells. Further research for the first time confirmed that CHIP interacts and degrades transferrin receptor 1 (TfR1) by ubiquitin-proteasome pathway, which leads to the inhibition of ferroptosis and promotes the proliferation of HCC cells. The analysis of proteomics data from CPTAC revealed a negative correlation between CHIP and TfR1 protein expression levels in HCC. These findings indicate that CHIP acts as a negative modulator of ferroptosis and functions as an oncogene in HCC.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Proliferation , Liver Neoplasms/pathology , Receptors, Transferrin , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
3.
Biochem Biophys Res Commun ; 613: 207-213, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35617808

ABSTRACT

As the first-generation targeted therapy, sorafenib remains an effective single-drug treatment for advanced hepatocellular carcinoma (HCC). Unfortunately, the existence of resistance restricts the long-term benefit of patients. UDP-glucose 6-dehydrogenase (UGDH) is the key enzyme of glucuronic acid metabolism which was largely reported in mediating drug systemic elimination. In this study, we explore its critical role in regulating sorafenib sensitivity. Here we find sorafenib exposure could activate glucuronic acid metabolism, accompanied with the elevated expression of UGDH. Interference with the route by silencing UGDH could boost HCC cells sensitivity to sorafenib. Meanwhile, the analysis of HCC patients with sorafenib treatment displayed that low UGDH expression predicted superior prognosis. Further screening assay suggested that unfolded protein response (UPR) involves in UGDH silencing-mediated apoptosis. Xenograft model confirmed that combined UGDH intervention could significantly improve sorafenib efficacy. Our results reveal the impact of sorafenib exposure on glucuronic acid metabolism reprogramming and provide UGDH as a promising target to improve sorafenib efficacy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Unfolded Protein Response , Uridine Diphosphate Glucose Dehydrogenase , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Glucuronic Acid/metabolism , Humans , Liver Neoplasms/pathology , Sorafenib/pharmacology , Sorafenib/therapeutic use , Uridine Diphosphate Glucose Dehydrogenase/metabolism , Xenograft Model Antitumor Assays
4.
Microb Pathog ; 140: 103939, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31870758

ABSTRACT

Mycobacterium smegmatis MSMEG_6281, a peptidoglycan (PG) amidase, is essential in maintaining cell wall integrity. To address the potential roles during the MSMEG_6281-mediated biological process, we compared proteomes from wild-type M.smegmatis and MSMEG_6281 gene knockout strain (M.sm-ΔM_6281) using LC-MS/MS analysis. Peptide analysis revealed that 851 proteins were differentially produced with at least 1.2-fold changes, including some proteins involved in fatty acid metabolism such as acyl-CoA synthase, acyl-CoA dehydrogenase, MCE-family proteins, ATP-binding cassette (ABC) transporters, and MmpL4. Some proteins related to fatty acid degradation were enriched through protein-protein interaction analysis. Therefore, proteomic data showed that a lack of MSMEG_6281 affected fatty acid metabolism. Mycobacteria can produce diverse lipid molecules ranging from single fatty acids to highly complex mycolic acids, and mycobacterial surface-exposed lipids may impact biofilm formation. In this study, we also assessed the effects of MSMEG_6281 on biofilm phenotype using semi-quantitative and morphology analysis methods. These results found that M.sm-ΔM_6281 exhibited a delayed biofilm phenotype compared to that of the wild-type M.smegmatis, and the changes were recovered when PG amidase was rescued in a ΔM_6281::Rv3717 strain. Our results demonstrated that MSMEG_6281 impacts fatty acid metabolism and further interferes with biofilm formation. These results provide a clue to study the effects of PG amidase on mycobacterial pathogenicity.


Subject(s)
Fatty Acids/metabolism , Mycobacterium smegmatis , N-Acetylmuramoyl-L-alanine Amidase/genetics , Amidohydrolases/genetics , Amidohydrolases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms , Gene Expression Profiling , Gene Knockout Techniques , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/metabolism , Mycobacterium smegmatis/pathogenicity , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptidoglycan/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...