Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 930: 172895, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38697545

ABSTRACT

The widespread presence of fluoride in water, food, and the environment continues to exacerbate the impact of fluoride on the male reproductive health. However, as a critical component of the male reproductive system, the intrinsic mechanism of fluoride-induced cauda epididymis damage and the role of miRNAs in this process are still unclear. This study established a mouse fluorosis model and employed miRNA and mRNA sequencing; Evans blue staining, Oil Red O staining, TEM, immunofluorescence, western blotting, and other technologies to investigate the mechanism of miRNA in fluoride-induced cauda epididymal damage. The results showed that fluoride exposure increased the fluoride concentration in the hard tissue and cauda epididymis, altered the morphology and ultrastructure of the cauda epididymis, and reduced the motility rate, normal morphology rate, and hypo-osmotic swelling index of the sperm in the cauda epididymis. Furthermore, sequencing results revealed that fluoride exposure resulted in differential expression of 17 miRNAs and 4725 mRNAs, which were primarily enriched in the biological processes of tight junctions, inflammatory response, and lipid metabolism, with miR-742-3p, miR-141-5p, miR-878-3p, and miR-143-5p serving as key regulators. Further verification found that fluoride damaged tight junctions, raised oxidative stress, induced an inflammatory response, increased lipid synthesis, and reduced lipid decomposition and transport in the cauda epididymis. This study provided a theoretical basis for developing miRNA as potential diagnostic markers and therapeutic target drugs for this injury.


Subject(s)
Epididymis , Fluorides , MicroRNAs , RNA, Messenger , Male , Animals , MicroRNAs/metabolism , Fluorides/toxicity , Mice , Epididymis/drug effects , Epididymis/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Materials (Basel) ; 9(7)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-28773621

ABSTRACT

This study aimed to investigate the incorporation of rutin into electrospun pullulan and poly(vinyl alcohol) (PVA) nanofibers to obtain ultraviolet (UV)-resistant properties. The effect of weight ratios between pullulan and PVA, and the addition of rutin on the nanofibers' morphology and diameters were studied and characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) analysis was utilized to investigate the interaction between pullulan and PVA, as well as with rutin. The results showed that the inclusion of PVA results in the increase in the fiber's diameter. The addition of rutin had no obvious effect on the fibers' average diameters when the content of rutin was less than 7.41%. FTIR results indicated that a hydrogen bond formed between pullulan and PVA, also between these polymers and rutin. Moreover, the addition of rutin could enhance the mechanical properties due to its stiff structure and could decrease the transmittance of UVA and UVB to be fewer than 5%; meanwhile, the value of ultraviolet protection factor (UPF) reached more than 40 and 50 when the content of rutin was 4.46% and 5.67%, respectively. Therefore, the electrospun pullulan/PVA/rutin nanofibrous mats showed excellent UV resistance and have potential applications in anti-ultraviolet packaging and dressing materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...