Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 274
Filter
1.
Biology (Basel) ; 13(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38785809

ABSTRACT

Few studies have explored the biological mechanism by which probiotics alleviate adverse reactions to chemotherapy drugs after local hepatic chemotherapy perfusion by regulating the intestinal flora. This study investigates the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the intestinal microbial structure and intestinal barrier function, as well as the potential mechanism in rabbits after local hepatic chemotherapy infusion. Eighteen New Zealand White rabbits were randomly divided into a control group, a hepatic local chemotherapy perfusion group, and a hepatic local chemotherapy perfusion + Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets group to assess the effects of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets on the adverse reactions. The administration of Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets alleviated the intestinal flora disorder caused by local hepatic perfusion chemotherapy, promoted the growth of beneficial bacteria, and inhibited the growth of harmful bacteria. The Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets also reduced the levels of serum pro-inflammatory cytokines and liver injury factors induced by local hepatic perfusion chemotherapy. Our findings indicate that Combined Live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus Cereus Tablets can ameliorate the toxicity and side effects of chemotherapy by regulating intestinal flora, blocking pro-inflammatory cytokines, reducing liver injury factors, and repairing the intestinal barrier. Probiotics may be used as a potential alternative therapeutic strategy to prevent the adverse reactions caused by chemotherapy with local hepatic perfusion.

2.
Parasite ; 31: 23, 2024.
Article in English | MEDLINE | ID: mdl-38759153

ABSTRACT

Eimeria tenella is an obligate intracellular parasite which causes great harm to the poultry breeding industry. Protein phosphorylation plays a vital role in host cell-E. tenella interactions. However, no comprehensive phosphoproteomic analyses of host cells at various phases of E. tenella infection have been published. In this study, quantitative phosphoproteomic analysis of chicken embryo DF-1 fibroblasts that were uninfected (UI) or infected with E. tenella for 6 h (PI6, the early invasion phase) or 36 h (PI36, the trophozoite development phase) was conducted. A total of 10,122 phosphopeptides matched to 3,398 host cell phosphoproteins were identified and 13,437 phosphorylation sites were identified. Of these, 491, 1,253, and 275 differentially expressed phosphorylated proteins were identified in the PI6/UI, PI36/UI, and PI36/PI6 comparisons, respectively. KEGG pathway enrichment analysis showed that E. tenella modulated host cell processes through phosphorylation, including focal adhesion, regulation of the actin cytoskeleton, and FoxO signaling to support its early invasion phase, and modulating adherens junctions and the ErbB signaling pathway to favor its trophozoite development. These results enrich the data on the interaction between E. tenella and host cells and facilitate a better understanding of the molecular mechanisms underlying host-parasite relationships.


Title: Analyse phosphoprotéomique quantitative de cellules DF-1 de poulet infectées par Eimeria tenella, par spectrométrie de masse avec marqueur de masse en tandem (TMT) et surveillance des réactions parallèles (PRM). Abstract: Eimeria tenella est un parasite intracellulaire obligatoire qui cause de graves dommages à l'industrie de l'élevage de volailles. La phosphorylation des protéines joue un rôle essentiel dans les interactions entre la cellule hôte et E. tenella. Cependant, aucune analyse phosphoprotéomique complète des cellules hôtes à différentes phases de l'infection par E. tenella n'a été publiée. Dans cette étude, une analyse phosphoprotéomique quantitative de fibroblastes DF-1 d'embryon de poulet non infectés (NI) ou infectés par E. tenella pendant 6 h (PI6, la phase d'invasion précoce) ou 36 h (PI36, la phase de développement des trophozoïtes) a été réalisée. Un total de 10 122 phosphopeptides correspondant à 3 398 phosphoprotéines de cellules hôtes ont été identifiés et 13 437 sites de phosphorylation ont été identifiés. Parmi celles-ci, 491, 1 253 et 275 protéines différentiellement phosphorylées exprimées ont été identifiées respectivement dans les comparaisons PI6/NI, PI36/NI et PI36/PI6. L'analyse d'enrichissement de la voie KEGG a montré qu'E. tenella modulait les processus de la cellule hôte par phosphorylation, y compris l'adhésion focale, la régulation du cytosquelette d'actine et la signalisation FoxO, pour aider sa phase d'invasion précoce, et la modulation des jonctions adhérentes et de la voie de signalisation ErbB pour favoriser le développement de son trophozoïte. Ces résultats enrichissent les données sur l'interaction entre E. tenella et les cellules hôtes et facilitent une meilleure compréhension des mécanismes moléculaires sous-jacents aux relations hôtes­parasites.


Subject(s)
Chickens , Eimeria tenella , Fibroblasts , Phosphoproteins , Proteomics , Tandem Mass Spectrometry , Animals , Eimeria tenella/physiology , Chickens/parasitology , Proteomics/methods , Phosphoproteins/analysis , Phosphoproteins/metabolism , Phosphorylation , Fibroblasts/parasitology , Cell Line , Poultry Diseases/parasitology , Host-Parasite Interactions , Coccidiosis/parasitology , Coccidiosis/veterinary , Chick Embryo , Signal Transduction
3.
Biomed Pharmacother ; 174: 116585, 2024 May.
Article in English | MEDLINE | ID: mdl-38615611

ABSTRACT

Emerging research into metabolic dysfunction-associated steatotic liver disease (MASLD) up until January 2024 has highlighted the critical role of cuproptosis, a unique cell death mechanism triggered by copper overload, in the disease's development. This connection offers new insights into MASLD's complex pathogenesis, pointing to copper accumulation as a key factor that disrupts lipid metabolism and insulin sensitivity. The identification of cuproptosis as a significant contributor to MASLD underscores the potential for targeting copper-mediated pathways for novel therapeutic approaches. This promising avenue suggests that managing copper levels could mitigate MASLD progression, offering a fresh perspective on treatment strategies. Further investigations into how cuproptosis influences MASLD are essential for unraveling the detailed mechanisms at play and for identifying effective interventions. The focus on copper's role in liver health opens up the possibility of developing targeted therapies that address the underlying causes of MASLD, moving beyond symptomatic treatment to tackle the root of the problem. The exploration of cuproptosis in the context of MASLD exemplifies the importance of understanding metal homeostasis in metabolic diseases and represents a significant step forward in the quest for more effective treatments. This research direction lights path for innovative MASLD management and reversal.


Subject(s)
Apoptosis , Copper , Fatty Liver , Animals , Humans , Copper/metabolism , Fatty Liver/metabolism , Insulin Resistance , Lipid Metabolism , Liver/metabolism , Liver/pathology , Metabolic Diseases/metabolism
4.
Biology (Basel) ; 13(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38666842

ABSTRACT

The gut microbiota (GM) are closely related to hepatocellular carcinoma (HCC) occurrence and development. Furthermore, patients with HCC who have received transcatheter arterial chemoembolization (TACE) treatment often experience adverse gastrointestinal reactions, which may be related to changes in the GM caused by the chemotherapeutic drugs used in TACE. Therefore, we conducted animal experiments to investigate these changes. We analyzed changes in the GM of New Zealand white rabbits treated with hepatic arterial chemotherapy by measuring the levels of serological and colonic tissue markers. Simultaneously, we evaluated the correlation between the GM and these markers to explore the mechanism by which chemotherapy affects the GM. Following transarterial chemotherapy with epirubicin, the Firmicutes abundance decreased, whereas that of Proteobacteria increased. The relative abundance of beneficial bacteria, such as Muribaculaceae, Enterococcus, Ruminococcus, and Clostridia, decreased in the experimental group compared with those in the control group. However, the relative abundance of harmful bacteria, such as Bacteroides and Escherichia (Shigella), was higher in the experimental group than in the control group. Following chemotherapy, the GM of rabbits showed a dynamic change over time, first aggravating and then subsiding. The changes were most notable on the fourth day after surgery and recovered slightly on the seventh day. The changes in the host's GM before and after arterial chemotherapy are evident. Hepatic arterial chemotherapy induces dysbiosis of the intestinal microbiota, disrupts intestinal barrier function, damages the integrity of the intestinal mucosa, increases intestinal permeability, facilitates excessive passage of harmful substances through the gut-liver axis communication between the liver and intestine, and triggers activation of inflammatory pathways such as LPS-TLR-4-pSTAT3, ultimately leading to an inflammatory response. This study provides a theoretical basis for combining TACE with targeted GM intervention to treat HCC and reduce adverse gastrointestinal reactions.

5.
Plant Signal Behav ; 19(1): 2338985, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38597293

ABSTRACT

The TEOSINTE-BRANCHED1/CYCLOIDEA/PROLEFERATING-CELL-FACTORS (TCP) gene family is a plant-specific transcriptional factor family involved in leaf morphogenesis and senescence, lateral branching, hormone crosstalk, and stress responses. To date, a systematic study on the identification and characterization of the TCP gene family in kiwifruit has not been reported. Additionally, the function of kiwifruit TCPs in regulating kiwifruit responses to the ethylene treatment and bacterial canker disease pathogen (Pseudomonas syringae pv. actinidiae, Psa) has not been investigated. Here, we identified 40 and 26 TCP genes in Actinidia chinensis (Ac) and A. eriantha (Ae) genomes, respectively. The synteny analysis of AcTCPs illustrated that whole-genome duplication accounted for the expansion of the TCP family in Ac. Phylogenetic, conserved domain, and selection pressure analysis indicated that TCP family genes in Ac and Ae had undergone different evolutionary patterns after whole-genome duplication (WGD) events, causing differences in TCP gene number and distribution. Our results also suggested that protein structure and cis-element architecture in promoter regions of TCP genes have driven the function divergence of duplicated gene pairs. Three and four AcTCP genes significantly affected kiwifruit responses to the ethylene treatment and Psa invasion, respectively. Our results provided insight into general characters, evolutionary patterns, and functional diversity of kiwifruit TCPs.


Subject(s)
Actinidia , Phylogeny , Actinidia/genetics , Transcription Factors/genetics , Ethylenes , Pseudomonas syringae/physiology , Plant Diseases/microbiology
6.
Trials ; 25(1): 200, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509589

ABSTRACT

BACKGROUND: The neural cells in the brains of patients with Parkinson's disease (PWP) display aberrant synchronized oscillatory activity within the beta frequency range. Additionally, enhanced gamma oscillations may serve as a compensatory mechanism for motor inhibition mediated by beta activity and also reinstate plasticity in the primary motor cortex affected by Parkinson's disease. Transcranial alternating current stimulation (tACS) can synchronize endogenous oscillations with exogenous rhythms, thereby modulating cortical activity. The objective of this study is to investigate whether the addition of tACS to multidisciplinary intensive rehabilitation treatment (MIRT) can improve symptoms of PWP so as to enhance the quality of life in individuals with Parkinson's disease based on the central-peripheral-central theory. METHODS: The present study was a randomized, double-blind trial that enrolled 60 individuals with Parkinson's disease aged between 45 and 70 years, who had Hoehn-Yahr scale scores ranging from 1 to 3. Participants were randomly assigned in a 1:1 ratio to either the tACS + MIRT group or the sham-tACS + MIRT group. The trial consisted of a two-week double-blind treatment period followed by a 24-week follow-up period, resulting in a total duration of twenty-six weeks. The primary outcome measured the change in PDQ-39 scores from baseline (T0) to 4 weeks (T2), 12 weeks (T3), and 24 weeks (T4) after completion of the intervention. The secondary outcome assessed changes in MDS-UPDRS III scores at T0, the end of intervention (T1), T2, T3, and T4. Additional clinical assessments and mechanistic studies were conducted as tertiary outcomes. DISCUSSION: The objective of this study is to demonstrate that tACS can enhance overall functionality and improve quality of life in PWP, based on the framework of MIRT. Additionally, it seeks to establish a potential correlation between these therapeutic effects and neuroplasticity alterations in relevant brain regions. The efficacy of tACS will be assessed during the follow-up period in order to optimize neuroplasticity and enhance its potential impact on rehabilitation efficiency for PWP. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300071969. Registered on 30 May 2023.


Subject(s)
Parkinson Disease , Transcranial Direct Current Stimulation , Humans , Middle Aged , Aged , Parkinson Disease/diagnosis , Parkinson Disease/therapy , Parkinson Disease/complications , Transcranial Direct Current Stimulation/adverse effects , Transcranial Direct Current Stimulation/methods , Quality of Life , Exercise Therapy/methods , Double-Blind Method , Randomized Controlled Trials as Topic
7.
Opt Express ; 32(3): 4728-4744, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38297667

ABSTRACT

Long-distance transmission between spatially separated microwave cavities is a crucial area of quantum information science and technology. In this work, we present a method for achieving long-distance transmission of arbitrary quantum states between two microwave cavities, by using a hybrid system that comprises two microwave cavities, two nitrogen-vacancy center ensembles (NV ensembles), two optical cavities, and an optical fiber. Each NV ensemble serves as a quantum transducer, dispersively coupling with a microwave cavity and an optical cavity, which enables the conversion of quantum states between a microwave cavity and an optical cavity. The optical fiber acts as a connector between the two optical cavities. Numerical simulations demonstrate that our method allows for the transfer of an arbitrary photonic qubit state between two spatially separated microwave cavities with high fidelity. Furthermore, the method exhibits robustness against environmental decay, parameter fluctuations, and additive white Gaussian noise. Our approach offers a promising way for achieving long-distance transmission of quantum states between two spatially separated microwave cavities, which may have practical applications in networked large-scale quantum information processing and quantum communication.

8.
Adv Sci (Weinh) ; 11(15): e2308958, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342625

ABSTRACT

Direct ethanol fuel cells (DEFCs) play an indispensable role in the cyclic utilization of carbon resources due to its high volumetric energy density, high efficiency, and environmental benign character. However, owing to the chemically stable carbon-carbon (C─C) bond of ethanol, its incomplete electrooxidation at the anode severely inhibits the energy and power density output of DEFCs. The efficiency of C─C bond cleaving on the state-of-the-art Pt or Pd catalysts is reported as low as 7.5%. Recently, tremendous efforts are devoted to this field, and some effective strategies are put forward to facilitate the cleavage of the C─C bond. It is the right time to summarize the major breakthroughs in ethanol electrooxidation reaction. In this review, some optimization strategies including constructing core-shell nanostructure with alloying effect, doping other metal atoms in Pt and Pd catalysts, engineering composite catalyst with interface synergism, introducing cascade catalytic sites, and so on, are systematically summarized. In addition, the catalytic mechanism as well as the correlations between the catalyst structure and catalytic efficiency are further discussed. Finally, the prevailing limitations and feasible improvement directions for ethanol electrooxidation are proposed.

9.
World J Clin Cases ; 12(1): 169-175, 2024 Jan 06.
Article in English | MEDLINE | ID: mdl-38292629

ABSTRACT

BACKGROUND: Elizabethkingia miricola is a non-fermenting gram-negative bacterium, which was first isolated from the condensate of the Russian peace space station in 2003. Most studies on this bacterium have been carried out in the laboratory, and clinical case studies are rare. To date, a total of 6 clinical cases have been reported worldwide. CASE SUMMARY: We present the first case of postoperative pulmonary infection in a patient with intracerebral hemorrhage due to Elizabethkingia miricola. The imaging characteristics of pulmonary infection were identified and the formulation and selection of the clinical treatment plan for this patient are discussed. CONCLUSION: Elizabethkingia miricola infection is rare. When pulmonary infection occurs, computed tomography imaging may show diffuse distribution of a ground glass density shadow in both lungs, the air containing bronchial sign in local areas, thickening of bronchial vascular bundle, and pleural effusion.

10.
J Adv Res ; 57: 15-42, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37142184

ABSTRACT

BACKGROUND: Crops are constantly attacked by various pathogens. These pathogenic microorganisms, such as fungi, oomycetes, bacteria, viruses, and nematodes, threaten global food security by causing detrimental crop diseases that generate tremendous quality and yield losses worldwide. Chemical pesticides have undoubtedly reduced crop damage; however, in addition to increasing the cost of agricultural production, the extensive use of chemical pesticides comes with environmental and social costs. Therefore, it is necessary to vigorously develop sustainable disease prevention and control strategies to promote the transition from traditional chemical control to modern green technologies. Plants possess sophisticated and efficient defense mechanisms against a wide range of pathogens naturally. Immune induction technology based on plant immunity inducers can prime plant defense mechanisms and greatly decrease the occurrence and severity of plant diseases. Reducing the use of agrochemicals is an effective way to minimize environmental pollution and promote agricultural safety. AIM OF REVIEW: The purpose of this workis to offer valuable insights into the current understanding and future research perspectives of plant immunity inducers and their uses in plant disease control, ecological and environmental protection, and sustainable development of agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW: In this work, we have introduced the concepts of sustainable and environment-friendly concepts of green disease prevention and control technologies based on plant immunity inducers. This article comprehensively summarizes these recent advances, emphasizes the importance of sustainable disease prevention and control technologies for food security, and highlights the diverse functions of plant immunity inducers-mediated disease resistance. The challenges encountered in the potential applications of plant immunity inducers and future research orientation are also discussed.


Subject(s)
Pesticides , Plant Immunity , Crops, Agricultural , Disease Resistance , Plant Diseases/prevention & control
11.
Adv Sci (Weinh) ; 11(6): e2307049, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38044314

ABSTRACT

An ideal DNA-encoded library (DEL) selection requires the library to consist of diverse core skeletons and cover chemical space as much as possible. However, the lack of efficient on-DNA synthetic approaches toward core skeletons has greatly restricted the diversity of DEL. To mitigate this issue, this work disclosed a "Mask & Release" strategy to streamline the challenging on-DNA core skeleton synthesis. N-phenoxyacetamide is used as a masked phenol and versatile directing group to mediate diversified DNA-compatible C-H functionalization, introducing the 1st-dimensional diversity at a defined site, and simultaneously releasing the phenol functionality, which can facilitate the introduction of the 2nd diversity. This work not only provides a set of efficient syntheses toward DNA-conjugated drug-like core skeletons such as ortho-alkenyl/sulfiliminyl/cyclopropyl phenol, benzofuran, dihydrobenzofuran but also provides a paradigm for on-DNA core skeleton synthetic method development.


Subject(s)
DNA , Phenol , Phenols
12.
Zhongguo Zhong Yao Za Zhi ; 48(20): 5548-5557, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-38114147

ABSTRACT

To explore the quality consistency evaluation method for multi-component traditional Chinese medicine and establish a dissolution evaluation method suitable for the characteristics of multi-component Chinese patent medicine, this study discussed the characteristics and advantages of the flow-through cell method in the dissolution evaluation of Chinese patent medicine by comparing the impact of the small cup method and the flow-through cell method on the dissolution behavior of water-soluble and lipid-soluble major active components of Danshen Tablets. Dissolution tests were performed using the small cup method as described in the 2020 edition of the Chinese Pharmacopoeia and the newly introduced flow-through cell method(closed-loop method) with water solution containing 0.5% SDS as dissolution medium. Cumulative dissolution curves of the water-soluble component salvianolic acid B and the lipid-soluble component tanshinone Ⅱ_A in Danshen Tablets were plotted, and fitting and similarity analysis of the dissolution models was conducted to identify the characteristics and advantages of the flow-through cell method. For the small cup method, 150 mL of water containing 0.5% SDS was used as the dissolution medium, with a rotation speed of 75 r·min~(-1) and a temperature of(37±0.5) ℃, and 3 mL of samples were taken at 15, 30 min, 1, 2, and 4 h, with fresh dissolution medium added at the same temperature and volume. For the flow-through cell method, a closed-loop system was used. Danshen Tablets were placed in the flow-through cell with approximately 6.7 g of glass beads, and 150 mL of water containing 0.5% SDS was used as the dissolution medium. The flow rate was set at 20 mL·min~(-1), and the temperature and sampling were the same as the small cup method. The results showed that compared with the small cup method, the flow-through cell method had stronger discriminative power and higher sensitivity in distinguishing the dissolution behavior of the two components, and could better reflect the differences in formulation quality, especially for water-insoluble lipid-soluble components. Given that there were no essential differences in the in vitro release kinetics between the two methods, the flow-through cell method could not only replace the traditional small cup method but also better guide the formulation development and identify quality issues of formulations.


Subject(s)
Salvia miltiorrhiza , Medicine, Chinese Traditional , Tablets , Water , Lipids , Solubility
13.
Microorganisms ; 11(11)2023 Oct 28.
Article in English | MEDLINE | ID: mdl-38004668

ABSTRACT

Residents of the Qinghai-Tibet Plateau might experience shifts in their gut microbiota composition as a result of the plateau environment. For example, high altitudes can increase the abundance of obligate anaerobic bacteria, decrease the number of aerobic bacteria and facultative anaerobic bacteria, increase probiotics, and decrease pathogenic bacteria. This study aimed to determine the structure and metabolic differences in intestinal microbial communities among the Tibetan and Han populations on the Qinghai-Xizang Plateau and shed light on the factors that influence the abundance of the microbial communities in the gut. The structural characteristics of intestinal microorganisms were detected from blood and fecal samples using 16S rRNA sequencing. Metabolic characteristics were detected using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). The influencing factors were analyzed using Spearman's correlation analysis. Bacteroides and Bifidobacterium were dominant in the intestinal tract of the Han population, while Bacteroides and Prevotella were dominant in that of the Tibetan population, with marked differences in Pseudomonas, Prevotella, and other genera. Ferulic acid and 4-methylcatechol were the main differential metabolites between the Tibetan and Han ethnic groups. This may be the reason for the different adaptability of Tibetan and Han nationalities to the plateau. Alanine aminotransferase and uric acid also have a high correlation with different bacteria and metabolites, which may play a role. These results reveal notable disparities in the compositions and metabolic characteristics of gut microbial communities in the Tibetan and Han people residing on the Qinghai-Tibet Plateau and may provide insights regarding the mechanism of plateau adaptability.

14.
Ecotoxicol Environ Saf ; 265: 115516, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37757626

ABSTRACT

Mono-2-ethylhexyl phthalic acid (MEHP) is the most toxic metabolite of plasticizer di-2-ethylhexyl phthalic acid (DEHP), and there is limited information available on the effects of MEHP on neurotoxicity. This study aims to examine the neurotoxicity of MEHP and preliminarily explore its potential molecular mechanisms. We found that MEHP impeded the growth of zebrafish embryos and the neurodevelopmental-related gene expression at environmentally relevant concentrations. MEHP exposure also induces oxidative stress response and brain cell apoptosis accompanied by a decrease in acetylcholinesterase (AChE) activity in zebrafish larvae. RNA-Seq and bioinformatics analysis showed that MEHP treatment altered the nervous system, neurogenic diseases, and visual perception pathways. The locomotor activity in dark-to-light cycles and phototaxis test confirmed the abnormal neural behavior of zebrafish larvae. Besides, the immune system has produced a large number of differentially expressed genes related to neural regulation. Inflammatory factor IL1ß and IL-17 signaling pathways highly respond to MEHP, indicating that inflammation caused by immune system imbalance is a potential mechanism of MEHP-induced neurotoxicity. This study expands the understanding of the toxicity and molecular mechanisms of MEHP, providing a new perspective for in-depth neurotoxicity exploration of similar compounds.

15.
Microorganisms ; 11(9)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37764130

ABSTRACT

This study examined the effects of hypoxemia caused by acute high-altitude hypoxia (AHAH) exposure on the human intestinal flora and its metabolites. The changes in the intestinal flora, metabolism, and erythropoietin content in the AHAH population under altitude hypoxia conditions were comprehensively analyzed using 16S rRNA sequencing, metabonomics, and erythropoietin content. The results showed that compared with those in the control group (C group), the flora and metabolites in the hypoxemia group (D group) were altered. We found alterations in the flora according to the metabolic marker tyrosine through random forest and ROC analyses. Fecal and serum metabonomics analyses revealed that microbial metabolites could be absorbed into the blood and participate in human metabolism. Finally, a significant correlation between tyrosine and erythropoietin (EPO) content was found, which shows that human intestinal flora and its metabolites can help to confront altitude stress by regulating EPO levels. Our findings provide new insights into the adaptive mechanism and prevention of AHAH.

16.
Opt Lett ; 48(17): 4428-4431, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656520

ABSTRACT

Grover's search algorithm is a well-known quantum algorithm that has been extensively studied and improved to increase its success rate and enhance its flexibility. However, most improved search algorithms require an adjustment of the oracle, which may not be feasible in practical problem-solving scenarios. In this work, we report an experimental demonstration of a deterministic quantum search for multiple marked states without adjusting the oracle. A linear optical setup is designed to search for two marked states, one in a 16-state database with an initial equal-superposition state and the other in an 8-state database with different initial nonequal-superposition states. The evolution of the probability of finding each state in the database is also measured and displayed. Our experimental results agree well with the theoretical predictions, thereby proving the feasibility of the search protocol and the implementation scheme. This work is a pioneering experimental demonstration of deterministic quantum search for multiple marked states without adjusting the oracle.

17.
Biology (Basel) ; 12(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627035

ABSTRACT

Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.

18.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511148

ABSTRACT

The intestinal flora plays an important role in the occurrence and development of liver cancer, affecting the efficacy and side effects of conventional antitumor therapy. Recently, immunotherapy for liver cancer has been a palliative treatment for patients with advanced liver cancer lacking surgical indications. Representative drugs include immune checkpoint inhibitors, regulators, tumor vaccines, and cellular immunotherapies. The effects of immunotherapy on liver cancer vary because of the heterogeneity of the tumors. Intestinal flora can affect the efficacy and side effects of immunotherapy for liver cancer by regulating host immunity. Therefore, applying probiotics, prebiotics, antibiotics, and fecal transplantation to interfere with the intestinal flora is expected to become an important means of assisting immunotherapy for liver cancer. This article reviews publications that discuss the relationship between intestinal flora and immunotherapy for liver cancer and further clarifies the potential relationship between intestinal flora and immunotherapy for liver cancer.


Subject(s)
Gastrointestinal Microbiome , Liver Neoplasms , Humans , Gastrointestinal Microbiome/physiology , Liver Neoplasms/therapy , Fecal Microbiota Transplantation , Immunotherapy
19.
Food Chem ; 427: 136665, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37437404

ABSTRACT

Public exposure to synthetic dyes through foods has attracted ongoing and serious attention. Here we developed and validated a simultaneous screening and quantitation method for the analysis of fat-soluble synthetic dyes that most frequently found in foods, using C18 d-SPE clean-up and UHPLC-Q-Orbitrap HRMS on Full-MS/dd-MS2 mode. During a single run, 104 dyes including 6 pairs of isomers were distinguished based on chromatographic separation and unique product ions. The method showed satisfactory linearity (R > 0.99), recoveries (61.3 %-118.8 %), precision (<20 %) and limit of quantification (0.05-0.5 mg/kg). For 98 % of test dyes, screening detection limits ranged from 2.5 to 25 µg/kg. The validated method was successfully applied to real commercial foodstuffs revealing the presence of two selected illegal dyes in three samples.


Subject(s)
Coloring Agents , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Coloring Agents/analysis , Tandem Mass Spectrometry/methods , Food , Solid Phase Extraction/methods
20.
RSC Adv ; 13(24): 16145-16153, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37260719

ABSTRACT

Long afterglow luminescent (LAL) materials can release their stored light after turning off the light irradiating on them. Because of this unique characteristic, the coupling of LAL materials and conventional semiconductors is an environmental-friendly method for supporting photocatalytic activity for environmental remediation. Currently, the exploration of "afterglow-catalysis" materials for the fabrication of around-the-clock photocatalytic systems is still in its infancy. Accordingly, herein, we summarize the application of LAL materials in photocatalytic environmental remediation and energy crisis alleviation to stimulate further motivation for the development of novel LAL materials. By discussing the works in the last five years on novel LAL materials, we anticipate the development of new materials, i.e., "afterglow-catalysis" composites, to realize waste-to-energy, even achieving industrialization.

SELECTION OF CITATIONS
SEARCH DETAIL
...