Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 104(10): 10780-10795, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34253359

ABSTRACT

Rumen microbiota intervention has long been used to cure ruminal indigestion in production and has recently become a research hotspot. However, how it controls the remodeling of rumen bacterial homeostasis and the restoration of rumen fermentation in cows of subacute ruminal acidosis (SARA) remains poorly understood. This study explored changes in rumen fermentation and bacterial communities in SARA cows following rumen content transplantation (RCT). The entire experiment comprised 2 periods: the SARA induction period and the RCT period. During the SARA induction period, 12 ruminally cannulated lactating Holstein cows were selected and allocated into 2 groups at random, fed either a conventional diet [CON; n = 4; 40% concentrate, dry matter (DM) basis] or a high-grain diet (HG; n = 8; 60% concentrate, DM basis). After the SARA induction period, the RCT period began. The HG cows were randomly divided into 2 groups: the donor-recipient (DR) group and the self-recipient (SR) group, and their rumen contents were removed completely before RCT. For the DR group, cows received 70% rumen content from the CON cows, paired based on comparable body weight; for the SR group, each cow received 70% rumen content, self-derived. The results showed that nearly all rumen fermentation parameters returned to the normal levels that the cows had before SARA induction after 6 d of transplantation, regardless of RCT. The concentrations of acetate, valerate, and total volatile fatty acids (VFA) were not recovered in the SR cows, whereas all of them were recovered in the DR cows. The amplicon sequencing results indicated that both the SR and DR cows rebuild their rumen bacterial homeostasis quickly within 4 d after RCT, and the DR group showed a higher level of bacterial community diversity. At the genus level, the DR cows displayed an improved proportion of unclassified Ruminococcaceae and Saccharofermentans compared with the SR cows. Correlation analysis between the rumen bacteria and rumen fermentation suggested some potential relationships between the predominant transplantation-sensitive operational taxonomic units and VFA. Co-occurrence network analysis revealed that RCT affected only those rumen bacterial taxa that showed weak interactions with other taxa and did not affect the pivotal rumen bacteria with high levels of co-occurrence. Our findings indicate that RCT contributes to the restoration of rumen bacterial homeostasis and rumen fermentation in cows suffering from SARA without affecting the core microbiome.


Subject(s)
Acidosis , Cattle Diseases , Acidosis/metabolism , Acidosis/veterinary , Animal Feed , Animals , Bacteria , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Female , Fermentation , Hydrogen-Ion Concentration , Lactation , Milk , Rumen/metabolism
2.
J Dairy Sci ; 104(2): 2087-2105, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358156

ABSTRACT

The high-grain diets fed to ruminants generally alters the structure and function of rumen microbiota, resulting in variations of rumen fermentation patterns and the occurrence of subacute rumen acidosis (SARA). To clarify the microbial mechanism for carbohydrate metabolism during SARA, 8 ruminally cannulated Holstein cows in mid lactation were selected for a 3-wk experiment. The cows were randomly divided into 2 groups, fed either a conventional diet (CON; 40% concentrate; dry matter basis) or a high-grain diet (HG; 60% concentrate; dry matter basis). Compared with the CON diet, the HG diet reduced average daily pH (5.71 vs. 6.13), acetate concentration (72.56 vs. 78.44 mM), acetate ratio (54.81 vs. 65.24%), and the ratio of the concentrations of acetate to propionate (1.87 vs. 3.21) but increased the concentrations of total volatile fatty acids (133.03 vs. 120.22 mM), propionate (41.32 vs. 24.71 mM), and valerate (2.46 vs. 1.68 mM) and the propionate ratio (30.51 vs. 20.47%). Taxonomic analysis indicated that the HG cows had a higher relative abundance of Ruminococcus, Eubacterium, Selenomonas, Ruminobacter, Succinimonas, Methanomicrobium, and Methanocaldococcus accompanied by a lower relative abundance of unclassified Firmicutes, unclassified Bacteroidetes, Bacteroides, Fibrobacter, Alistipes, Candidatus Methanoplasma, Methanomassiliicoccus, and Methanolobus. Carbohydrate-active enzyme annotation suggested that there was enriched abundance of glycosyltransferases (GT) 2, glycoside hydrolase (GH) 13, GH24, carbohydrate-binding module (CBM) 26, GH73, GH25, CBM12, GH23, GT8, CBM50, and GT9 and reduced abundance of GH78, GH31, S-layer homology, GH109, carbohydrate esterase 1, GH3, carbohydrate esterase 10, and GH43 in the HG group. Functional profiling revealed that the HG feeding mainly downregulated the pentose phosphate pathway of carbohydrate catabolism, acetate metabolism, propionate metabolism (succinate pathway), and methane metabolism, whereas it upregulated the Embden-Meyerhof-Parnas and Entner-Doudoroff pathways of glycolysis and the citrate cycle. Additionally, the HG feeding promoted the abundance of various antibiotic resistance genes and antimicrobial resistance gene families. These results elucidated the structure and function adjustment of rumen microbiota for carbohydrate metabolism and summarized the enrichment of rumen antibiotic resistance genes under the HG feeding, which expands our understanding of the mechanism underlying the response of rumen microbiota to SARA in dairy cattle.


Subject(s)
Acidosis/veterinary , Animal Feed , Carbohydrate Metabolism/genetics , Cattle Diseases/genetics , Drug Resistance, Microbial/genetics , Edible Grain , Gastrointestinal Microbiome/genetics , Rumen/microbiology , Acidosis/diet therapy , Acidosis/etiology , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Cattle Diseases/metabolism , Diet/veterinary , Fatty Acids, Volatile/metabolism , Female , Fermentation , Gastrointestinal Microbiome/drug effects , Hydrogen-Ion Concentration , Lactation , Milk , Rumen/metabolism
3.
Cell Death Dis ; 5: e1129, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24651432

ABSTRACT

Epithelial-to-mesenchymal transition (EMT) has an important role in invasion and metastasis of hepatocellular carcinoma (HCC). To explore the regulatory mechanism of atypical protein kinase C ι (aPKCι) signaling pathways to HCC development, and find an agent for targeted therapy for HCC, immortalized murine hepatocytes were employed to establish an EMT cell model of HCC, MMH-RT cells. Our study showed that EMT took place in MMH-R cells under the effect of transforming growth factor-ß1 (TGF-ß1) overexpressing aPKCι. Furthermore, we showed that the aPKCι blocking agent aurothiomalate (ATM) inhibited EMT and decreased invasion of hepatocytes. Moreover, ATM selectively inhibited proliferation of mesenchymal cells and HepG2 cells and induced apoptosis. However, ATM increased proliferation of epithelial cells and had little effect on apoptosis and invasion of epithelial cells. In conclusion, our result suggested that aPKCι could be an important bio-marker of tumor EMT, and used as an indicator of invasion and malignancy. ATM might be a promising agent for targeted treatment of HCC.


Subject(s)
Antineoplastic Agents/pharmacology , Biomarkers, Tumor/antagonists & inhibitors , Carcinoma, Hepatocellular/enzymology , Cell Movement/drug effects , Epithelial-Mesenchymal Transition/drug effects , Gold Sodium Thiomalate/pharmacology , Isoenzymes/antagonists & inhibitors , Liver Neoplasms/enzymology , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Genes, ras , Hep G2 Cells , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Neoplasm Invasiveness , Protein Kinase C/genetics , Protein Kinase C/metabolism , Signal Transduction/drug effects , Time Factors , Transfection , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...