Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38658375

ABSTRACT

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Protein Precursor , HSP90 Heat-Shock Proteins , Hippocampus , Mice, Inbred C57BL , Mice, Transgenic , tau Proteins , Animals , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Hippocampus/metabolism , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , tau Proteins/metabolism , tau Proteins/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Male , Disease Models, Animal , Phosphorylation , Age Factors , Aging/metabolism , RNA, Messenger/metabolism , RNA, Messenger/genetics , Peptide Fragments/metabolism , Peptide Fragments/genetics , Presenilin-1/genetics , Presenilin-1/metabolism
2.
J Inflamm Res ; 16: 3593-3617, 2023.
Article in English | MEDLINE | ID: mdl-37641702

ABSTRACT

Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.

3.
Phytother Res ; 37(8): 3583-3601, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37070654

ABSTRACT

Oral decoction is widely applied in traditional Chinese medicines. The polysaccharides of decoction promote the exposure of small molecules and increase their bioavailability. This study mainly compared the component and activities of total ginsenosides (TGS) and ginseng extract (GE) on immunosuppressed mice induced by cyclophosphamide. Thirty-two mice were randomly divided into control, model, TGS, and GE groups. The mice were orally administered for 28 days and then injected with cyclophosphamide on the last four days. The results of component analysis showed the total content of 12 ginsenosides in TGS (67.21%) was higher than GE (2.04%); the total content of 17 amino acids in TGS (1.41%) was lower than GE (5.36%); the total content of 10 monosaccharides was similar in TGS (74.12%) and GE (76.36%). The animal results showed that both TGS and GE protected the hematopoietic function of bone marrow by inhibiting cell apoptosis, and recovering the normal cell cycle of BM; maintained the dynamic balance between the Th1 and Th2 cells; also protected the spleen, thymus, and liver. Meanwhile, TGS and GE protected the intestinal bacteria of immunosuppressed mice by increasing the abundance of lactobacillus and decreasing the abundance of the odoribacter and clostridia_UCG-014. The prevention effect of GE was superior to TGS in some parameters. In conclusion, TGS and GE protected the immune function of immunosuppressed mice induced by cyclophosphamide. Meanwhile, GE showed higher bioavailability and bioactivity compared with TGS, because the synergistic effect of polysaccharides and ginsenosides plays an important role in protecting the immune function.


Subject(s)
Ginsenosides , Panax , Mice , Animals , Ginsenosides/pharmacology , Panax/chemistry , Cyclophosphamide/toxicity , Immunosuppression Therapy , Plant Extracts/pharmacology , Polysaccharides/pharmacology
4.
Phytomedicine ; 114: 154768, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36948143

ABSTRACT

BACKGROUND: Nicotinamide adenine dinucleotide (NAD+) metabolism is involved in the entire physiopathological process and is critical to human health. Long-term imbalance in NAD+ homeostasis is associated with various diseases, including non-alcoholic fatty liver disease, diabetes mellitus, cardiovascular diseases, neurodegenerative disorders, aging, and cancer, making it a potential target for effective therapeutic strategies. Currently, several natural products that target NAD+ metabolism have been widely reported to have significant therapeutic effects, but systematic summaries are lacking. PURPOSE: To summarize the latest findings on the prevention and treatment of various diseases through the regulation of NAD+ metabolism by various natural products in vivo and in vitro models, and evaluate the toxicities of the natural products. METHODS: PubMed, Web of Science, and ScienceDirect were searched using the keywords "natural products sources," "toxicology," "NAD+ clinical trials," and "NAD+," and/or paired with "natural products" and "diseases" for studies published within the last decade until January 2023. RESULTS: We found that the natural products mainly include phenols (curcumin, cyclocurcumin, 4-hydroxybenzyl alcohol, salvianolic acid B, pterostilbene, EGCG), flavonoids (pinostrobin, apigenin, acacetin, tilianin, kaempferol, quercetin, isoliquiritigenin, luteolin, silybin, hydroxysafflor yellow A, scutellarin), glycosides (salidroside), quinones (emodin, embelin, ß-LAPachone, shikonin), terpenoids (notoginsenoside R1, ginsenoside F2, ginsenoside Rd, ginsenoside Rb1, ginsenoside Rg3, thymoquinone, genipin), pyrazines (tetramethylpyrazine), alkaloids (evodiamine, berberine), and phenylpropanoids (ferulic acid). These natural products have antioxidant, energy-producing, anti-inflammatory, anti-apoptotic and anti-aging effects, which mainly influence the NAMPT/NAD+/SIRT, AMPK/SIRT1/PGC-1α, Nrf2/HO-1, PKCs/PARPs/NF-κB, and AMPK/Nrf2/mTOR signaling pathways, thereby regulating NAD+ metabolism to prevent and treat various diseases. These natural products have been shown to be safe, tolerable and have fewer adverse effects in various in vivo and in vitro studies and clinical trials. CONCLUSION: We evaluated the toxic effects of natural products and summarized the available clinical trials on NAD+ metabolism, as well as the recent advances in the therapeutic application of natural products targeting NAD+ metabolism, with the aim to provide new insights into the treatment of multiple disorders.


Subject(s)
Biological Products , Humans , Animals , NAD/metabolism , Biological Products/pharmacology , Biological Products/therapeutic use , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism
5.
Front Endocrinol (Lausanne) ; 14: 1112363, 2023.
Article in English | MEDLINE | ID: mdl-36824356

ABSTRACT

Diabetes mellitus (DM) is a metabolic disease characterized by chronic hyperglycaemia, with absolute insulin deficiency or insulin resistance as the main cause, and causes damage to various target organs including the heart, kidney and neurovascular. In terms of the pathological and physiological mechanisms of DM, oxidative stress is one of the main mechanisms leading to DM and is an important link between DM and its complications. Oxidative stress is a pathological phenomenon resulting from an imbalance between the production of free radicals and the scavenging of antioxidant systems. The main site of reactive oxygen species (ROS) production is the mitochondria, which are also the main organelles damaged. In a chronic high glucose environment, impaired electron transport chain within the mitochondria leads to the production of ROS, prompts increased proton leakage and altered mitochondrial membrane potential (MMP), which in turn releases cytochrome c (cyt-c), leading to apoptosis. This subsequently leads to a vicious cycle of impaired clearance by the body's antioxidant system, impaired transcription and protein synthesis of mitochondrial DNA (mtDNA), which is responsible for encoding mitochondrial proteins, and impaired DNA repair systems, contributing to mitochondrial dysfunction. This paper reviews the dysfunction of mitochondria in the environment of high glucose induced oxidative stress in the DM model, and looks forward to providing a new treatment plan for oxidative stress based on mitochondrial dysfunction.


Subject(s)
Diabetes Mellitus , Diabetic Angiopathies , Humans , Reactive Oxygen Species/metabolism , Antioxidants/metabolism , Oxidative Stress/physiology , Mitochondria/metabolism , DNA, Mitochondrial/genetics , Diabetes Mellitus/metabolism , Glucose/metabolism , Diabetic Angiopathies/pathology
6.
J Ginseng Res ; 46(6): 759-770, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36312736

ABSTRACT

Background: Aerobic cellular respiration provides chemical energy, adenosine triphosphate (ATP), to maintain multiple cellular functions. Sirtuin 1 (SIRT1) can deacetylate peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) to promote mitochondrial biosynthesis. Targeting energy metabolism is a potential strategy for the prevention and treatment of various diseases, such as cardiac and neurological disorders. Ginsenosides, one of the major bioactive constituents of Panax ginseng, have been extensively used due to their diverse beneficial effects on healthy subjects and patients with different diseases. However, the underlying molecular mechanisms of total ginsenosides (GS) on energy metabolism remain unclear. Methods: In this study, oxygen consumption rate, ATP production, mitochondrial biosynthesis, glucose metabolism, and SIRT1-PGC-1α pathways in untreated and GS-treated different cells, fly, and mouse models were investigated. Results: GS pretreatment enhanced mitochondrial respiration capacity and ATP production in aerobic respiration-dominated cardiomyocytes and neurons, and promoted tricarboxylic acid metabolism in cardiomyocytes. Moreover, GS clearly enhanced NAD+-dependent SIRT1 activation to increase mitochondrial biosynthesis in cardiomyocytes and neurons, which was completely abrogated by nicotinamide. Importantly, ginsenoside monomers, such as Rg1, Re, Rf, Rb1, Rc, Rh1, Rb2, and Rb3, were found to activate SIRT1 and promote energy metabolism. Conclusion: This study may provide new insights into the extensive application of ginseng for cardiac and neurological protection in healthy subjects and patients.

7.
Front Pharmacol ; 13: 975784, 2022.
Article in English | MEDLINE | ID: mdl-36133804

ABSTRACT

Inflammation and oxidative stress lead to various acute or chronic diseases, including pneumonia, liver and kidney injury, cardiovascular and cerebrovascular diseases, metabolic diseases, and cancer. Ginseng is a well-known and widely used ethnic medicine in Asian countries, and ginsenoside Rg3 is a saponin isolated from Panax ginseng C. A. Meyer, Panax notoginseng, or Panax quinquefolius L. This compound has a wide range of pharmacological properties, including antioxidant and anti-inflammatory activities, which have been evaluated in disease models of inflammation and oxidative stress. Rg3 can attenuate lung inflammation, prevent liver and kidney function damage, mitigate neuroinflammation, prevent cerebral and myocardial ischemia-reperfusion injury, and improve hypertension and diabetes symptoms. The multitarget, multipathway mechanisms of action of Rg3 have been gradually deciphered. This review summarizes the existing knowledge on the anti-inflammatory and antioxidant effects and underlying molecular mechanisms of ginsenoside Rg3, suggesting that ginsenoside Rg3 may be a promising candidate drug for the treatment of diseases with inflammatory and oxidative stress conditions.

8.
Front Pharmacol ; 13: 977410, 2022.
Article in English | MEDLINE | ID: mdl-36091814

ABSTRACT

Diabetic kidney disease (DKD) is one of the major public health problems in society today. It is a renal complication caused by diabetes mellitus with predominantly microangiopathy and is a major cause of end-stage renal disease (ESRD). Autophagy is a metabolic pathway for the intracellular degradation of cytoplasmic products and damaged organelles and plays a vital role in maintaining homeostasis and function of the renal cells. The dysregulation of autophagy in the hyperglycaemic state of diabetes mellitus can lead to the progression of DKD, and the activation or restoration of autophagy through drugs is beneficial to the recovery of renal function. This review summarizes the physiological process of autophagy, illustrates the close link between DKD and autophagy, and discusses the effects of drugs on autophagy and the signaling pathways involved from the perspective of podocytes, renal tubular epithelial cells, and mesangial cells, in the hope that this will be useful for clinical treatment.

9.
Chin Med ; 17(1): 90, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35907976

ABSTRACT

Hepatocellular carcinoma (HCC, accounting for 90% of primary liver cancer) was the sixth most common cancer in the world and the third leading cause of cancer death in 2020. The number of new HCC patients in China accounted for nearly half of that in the world. HCC was of occult and complex onset, with poor prognosis. Clinically, at least 15% of patients with HCC had strong side effects of interventional therapy (IT) and have poor sensitivity to chemotherapy and targeted therapy. Traditional Chinese medicine (TCM), as a multi-target adjuvant therapy, had been shown to play an active anti-tumor role in many previous studies. This review systematically summarized the role of TCM combined with clinically commonly used drugs for the treatment of HCC (including mitomycin C, cyclophosphamide, doxorubicin, 5-fluorouracil, sorafenib, etc.) in the past basic research, and summarized the efficacy of TCM combined with surgery, IT and conventional therapy (CT) in clinical research. It was found that TCM, as an adjuvant treatment, played many roles in the treatment of HCC, including enhancing the tumor inhibition, reducing toxic and side effects, improving chemosensitivity and prolonging survival time of patients. This review summarized the advantages of integrated traditional Chinese and modern medicine in the treatment of HCC and provides a theoretical basis for clinical research.

10.
Front Endocrinol (Lausanne) ; 13: 801303, 2022.
Article in English | MEDLINE | ID: mdl-35634495

ABSTRACT

Diabetic kidney disease (DKD) is a severe microvascular complication in patients with diabetes and is one of the main causes of renal failure. The current clinical treatment methods for DKD are not completely effective, and further exploration of the molecular mechanisms underlying the pathology of DKD is necessary to improve and promote the treatment strategy. Sirtuins are class III histone deacetylases, which play an important role in many biological functions, including DNA repair, apoptosis, cell cycle, oxidative stress, mitochondrial function, energy metabolism, lifespan, and aging. In the last decade, research on sirtuins and DKD has gained increasing attention, and it is important to summarize the relationship between DKD and sirtuins to increase the awareness of DKD and improve the cure rates. We have found that miRNAs, lncRNAs, compounds, or drugs that up-regulate the activity and expression of sirtuins play protective roles in renal function. Therefore, in this review, we summarize the biological functions, molecular targets, mechanisms, and signaling pathways of SIRT1-SIRT7 in DKD models. Existing research has shown that sirtuins have the potential as effective targets for the clinical treatment of DKD. This review aims to lay a solid foundation for clinical research and provide a theoretical basis to slow the development of DKD in patients.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , MicroRNAs , Sirtuins , Diabetic Nephropathies/metabolism , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Oxidative Stress , Sirtuin 1/metabolism
11.
Article in Chinese | MEDLINE | ID: mdl-35634664

ABSTRACT

Objective: To uncover the time-dependent expression pattern of ptk2b gene and ptk2b-encoded protein, protein tyrosine kinase 2 beta(PTK2B), in the brain tissues of transgenic animal models of Alzheimer's disease (AD) and its relationship with the levels of Aß1-42, phosphorylation of Tau (p-Tau) and low density lipoprotein receptor-related protein-1(LRP-1) in blood and brain tissues. Methods: In this study, 5-, 10- and 15-month-old APPswe/PS1dE9 double-transgenic mice harboring the genotype of AD confirmed by the gene test were divided into the 5-, 10- and 15-month-old experiment groups, and simultaneously, age-matched C57BL/6J mice were placed into the corresponding control groups, with 8 mice in each group. All mice were subjected to the Morris Water Maze for test of cognitive and behavioral ability. Expression profiles of PTK2B, Aß1-42, p-Tau/Tau and LRP-1 in the hippocampus or blood of mice were quantified by using the immunohistochemistry staining, Western blot or enzyme-linked immunosorbent assay (ELISA), while the mRNA expression of ptk2b in the hippocampus was quantified by using the real-time quantitative polymerase chain reaction (qRT-PCR). Results: Results of experiment groups demonstrated that as mice aged, the expression levels of PTK2B, ptk2b mRNA, Aß1-42 and p-Tau/Tau in the hippocampus were increased, and the expression of LRP-1 was decreased gradually. While in the blood, the level of Aß1-42 was decreased, and the cognitive and behavioral ability was decreased in an age-dependent manner (all P< 0.05). However, comparisons among the control groups, only the age-dependent downregulation of LRP-1 were observed in hippocampus(P<0.05), but other indicators had no significant differences (P>0.05). Conclusion: In the hippocampus of APP/PS1 double-transgenic mice, the expressions of PTK2B, Aß1-42 and p-Tau/Tau are upregulated, LRP-1 is downregulated, while cognitive and behavioral ability is decreased, and such changes are presented in a time-dependent manner.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor , Alzheimer Disease/metabolism , Amyloid beta-Peptides , Amyloid beta-Protein Precursor/genetics , Animals , Focal Adhesion Kinase 2/metabolism , Hippocampus/metabolism , Low Density Lipoprotein Receptor-Related Protein-1 , Maze Learning , Mice , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger
12.
J Ethnopharmacol ; 293: 115246, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35398500

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine (TCM) has been applied to diabetic kidney disease (DKD). A large number of animal trials each year focus on TCM for DKD, but the evidence for these preclinical studies is not clear. AIM OF THE STUDY: The aim of this study was to study the therapeutic effect of Jiedu Tongluo Baoshen formula (JTBF) on DKD proteinuria and renal protection. At the same time, it is verified that JTBF can reduce podocyte injury by enhancing autophagy function, and then achieve the effect of proteinuria. MATERIALS AND METHODS: We use high performance liquid chromatography to detect and analyze the fingerprint of JTBF to find the chemical composition. Subsequently, we constructed a DKD rat model induced by high-fat diet and streptozocin (HFD + STZ). Urine and blood biochemical automatic analyzer were used to detect 24-h urine protein quantification (24 h-UP) and renal function. The renal pathological changes were observed by H&E and transmission electron microscopy (TEM), and the levels of autophagy-related proteins and mRNA in podocytes were detected by immunohistochemistry, RT-qPCR and Western Blot. The chemical composition of JTBF was screened from traditional Chinese medicine systems pharmacol (TCMSP) and PubChem databases, and the potential targets and associated pathways of JTBF were predicted using kyoto encyclopedia of genes and genomes (KEGG) and protein-protein interaction (PPI) network analysis in network pharmacology, and confirmed in animal experiments and histopathological methods. RESULTS: We discovered 77 active ingredients of JTBF. Through animal experiments, it was found that JTBF reduced 24 h-UP and promoted the expression of podocin, nephrin, and WT-1 in podocytes, thereby reducing podocyte damage. At the same time, JTBF activates the expression of podocyte autophagy-related proteins (beclin-1, LC3 and P62). Subsequently, through network pharmacology predictions, 208 compounds were obtained from JTBF, and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) was a potential signal pathway. JTBF was obtained in DKD rat kidney tissue to inhibit the expression of PI3K, Akt and mTOR related proteins. CONCLUSIONS: JTBF enhance podocyte autophagy to reduce podocyte damage, thereby effectively treating DKD proteinuria and protecting kidney function.


Subject(s)
Autophagy , Diabetic Nephropathies , Drugs, Chinese Herbal , Podocytes , Proteinuria , Animals , Autophagy-Related Proteins/metabolism , Diabetes Mellitus/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Drugs, Chinese Herbal/pharmacology , Humans , Phosphatidylinositol 3-Kinases/metabolism , Podocytes/drug effects , Proteinuria/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
13.
Phytother Res ; 36(2): 857-872, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35026867

ABSTRACT

Vascular dysfunction can lead to a variety of fatal diseases, including cardiovascular and cerebrovascular diseases, metabolic syndrome, and cancer. Although a large number of studies have reported the therapeutic effects of natural compounds on vascular-related diseases, ginseng is still the focus of research. Ginseng and its active substances have bioactive effects against different diseases with vascular dysfunction. In this review, we summarized the key molecular mechanisms and signaling pathways of ginseng, its different active ingredients or formula in the prevention and treatment of vascular-related diseases, including cardiac-cerebral vascular diseases, hypertension, diabetes complications, and cancer. Moreover, the bidirectional roles of ginseng in promoting or inhibiting angiogenesis have been highlighted. We systematically teased out the relationship between ginseng and vascular dysfunction, which could provide a basis for the clinical application of ginseng in the future.


Subject(s)
Hypertension , Panax , Humans , Hypertension/drug therapy , Signal Transduction
14.
Sheng Li Xue Bao ; 73(5): 845-854, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708242

ABSTRACT

The aim of the present study was to explore the correlation between ptk2b/PTK2B (protein tyrosine kinase 2 beta, a ptk2b-encoded protein) and the level of low density lipoprotein receptor-related protein-1 (LRP-1), as well as to uncover the relationship between the changes in beta amyloid protein (Aß) levels in blood and brain and the expression of ptk2b in Aß-induced cognitive dysfunction mice. A total of 64 3-month-old C57BL/6J mice were divided randomly into the experimental group and control group. All mice underwent the intracerebroventricular (i.c.v.) intubation. Mice in the experimental group received the i.c.v. infusion of oligomeric Aß1-42 (0.1 µg/µL, 3.6 µL) to construct the cognitively impaired models, and three days later, those mice were further injected with PF431396 (an inhibitor of PTK2B, 15 µg/mL, Aß + PF group), phorbol-12-myristate-13-acetate (PMA, an agonist of PTK2B, 18.75 µg/mL, Aß + PMA group), RAP (an inhibitor of LRP-1, 0.2 µg/mL, Aß + RAP group) or normal saline (Aß + NS group). For mice in the control group, they underwent the i.c.v. infusion of NS, and 3 days later, they were additionally injected with PF431396 (PF group), PMA (PMA group), RAP (RAP group) or NS (NS group) in the volume of 2 µL. One week later, all mice were subjected to the determination of behavioral function in Morris water maze and the measurement of expression of Aß1-42, LRP-1 and PTK2B in blood and hippocampus using immunohistochemistry (IHC) staining, enzyme-linked immunosorbent assay (ELISA) and Western blot, and the measurement of mRNA expression of ptk2b in hippocampus using qRT-PCR. The results showed that the infusion of Aß induced an increase of Aß1-42 level in hippocampus and a decrease in blood, with the down-regulation of LRP-1 protein expression in hippocampus and up-regulation of mRNA and protein expression of ptk2b in hippocampus. For cognitively impaired mice, intervention of PF431396 caused the down-regulation of protein and mRNA expression of ptk2b in the hippocampus, while LRP-1 in hippocampus was up-regulated with a decrease in the level of Aß1-42 in hippocampus and an increase in the level of Aß1-42 in the blood, as well as significant improvement in cognitive function, while the administration of PMA resulted in the opposite changes. Moreover, the administration of RAP triggered the down-regulation of LRP-1 expression in hippocampus and an increase in the level of Aß1-42 in hippocampus and a decrease in the level of Aß1-42 in blood, with the deterioration of the behavioral functions, while protein and mRNA expression of ptk2b in hippocampus showed no evident changes. These results suggest that, in cognitively impaired mice, PTK2B, possibly via down-regulating LRP-1, increases the Aß1-42 level in brain, but decreases the Aß1-42 level in blood, thereby deteriorating the cognitive and behavioral functions of mice.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Amyloid beta-Peptides/metabolism , Animals , Brain , Cognitive Dysfunction/chemically induced , Disease Models, Animal , Focal Adhesion Kinase 2 , Hippocampus/metabolism , Mice , Mice, Inbred C57BL , Peptide Fragments
15.
Front Pharmacol ; 12: 763160, 2021.
Article in English | MEDLINE | ID: mdl-35111047

ABSTRACT

QingFei Yin (QFY), a Chinese traditional medicine recipe, is known for its excellent therapeutic pharmacological effects for the treatment of bacterial lung infections, although its molecular mechanism of action remains unknown. Here, QFY chemical composition was determined using a High-Performance Liquid Chromatography-Mass (HPLC-MS/MS)-based method then QFY was evaluated for protective pharmacological effects against pneumonia using two models: a Streptococcus pneumoniae-induced in vivo mouse model and an in vitro pneumolysin (PLY)-induced murine lung alveolar-derived MH-S cell line-based model. Notably, QFY exerted prominent anti-pneumonia effects both in vivo and in vitro. To further explore QFY protective effects, 4D label-free proteomics analysis, pathologic evaluation, and immunohistochemical (IHC) analysis were conducted to identify cellular pathways involved in QFY protection. Notably, our results indicated that NF-κB/NLRP3 and autophagy pathways may contribute to pharmacological effects associated with QFY-based protection. Briefly, QFY triggered autophagy via down-regulation of upstream NLRP3/mTOR signaling pathway events, resulting in the amelioration of inflammatory injury. Collectively, our results revealed molecular mechanisms underlying QFY protection against pneumonia as a foundation for the future development of novel treatments to combat this disease and reduce antibiotic abuse.

16.
Article in English | MEDLINE | ID: mdl-33354223

ABSTRACT

Pneumonia is a serious global health problem and the leading cause of mortality in children. Antibiotics are the main treatment for bacterial pneumonia, but there are serious drug resistance problems. Traditional Chinese medicine (TCM) has been used to treat diseases for thousands of years and has a unique theory. This article takes the treatment of pneumonia with Ephedra sinica as a representative hot medicine and Scutellariae Radix as a representative cold medicine as an example. We explore and explain the theory of treating the same disease with different TCM treatments. Using transcriptomics and network pharmacology methods, GO, KEGG enrichment, and PPI network construction were carried out, demonstrating that Ephedra sinica plays a therapeutic role through the NF-κB and apoptosis signaling pathways targeting PLAU, CD40LG, BLC2L1, CASP7, and CXCL8. The targets of Scutellariae Radix through the IL-17 signaling pathway are MMP9, CXCL8, and MAPK14. Molecular docking technology was also used to verify the results. In short, our results provide evidence for the theory of treating the same disease with different treatments, and we also discuss future directions for traditional Chinese medicine.

17.
Biomed Pharmacother ; 132: 110812, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33059263

ABSTRACT

AML is a kind of hematological malignant tumor that urgently requires different treatment options in order to increase the cure rate and survival rate. Cytarabine (ara-C) is currently the main drug used to treat AML patients and is usually combined with different chemotherapeutic agents. However, due to resistance to ara-C, a new combination is needed to reduce ara-C resistance and improve treatment outcome. As is known to all, ginseng is a traditional Chinese herb; compound K is the principal metabolic product of ginsenoside which also has anti-cancer activity in some cancer cells, while the mechanism is unclear. In our previous study, we found that compound K inhibited AML cell viability and induced apoptosis, and compound K combined with ara-C synergistically induced AML cell proliferation arrest. Thus, we sought to investigate the reason for this by focusing on the mitochondrial dysfunction and DNA damage. In this paper, our results provide a foundation for the clinical evaluation of concomitant administration of compound K and ara-C in order to reduce the resistance to ara-C and improve AML treatment.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , DNA Damage/drug effects , Leukemia, Myeloid, Acute/drug therapy , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytarabine/administration & dosage , Drug Resistance, Neoplasm , Drug Synergism , Ginsenosides/administration & dosage , Humans , Leukemia, Myeloid, Acute/pathology , Mitochondria/drug effects , Mitochondria/pathology
18.
Neuroreport ; 2020 May 15.
Article in English | MEDLINE | ID: mdl-32427805

ABSTRACT

The aim of this study was to investigate the effects of histone deacetyltase (HDAC) 6 on the functional and pathological changes of the amyloid beta (Aß)-induced cognitive dysfunction rats by regulating protein tyrosine kinase 2 beta (PTK2B). Ninety Sprague-Dawley rats were randomly divided into nine groups, consisting of five experimental groups and four control groups. In five experimental groups, Aß1-42 was infused intracerebroventricularly and 3 days later, rats in each group were infused intracerebroventricularly with tubastatin A hydrochloride (TSA), the histone deacetyltase 6 (HDAC6)-specific inhibitor (Aß + TSA group), theophylline, the HDACs agonist (Aß + theophylline group), PF431396, the PTK2B inhibitor (Aß + PF group), the combination of PF431396 and theophylline (Aß + PF + theophylline group) and normal saline (Aß + normal saline group), respectively. Rats in four control groups took normal saline that was equivalent to the volume of Aß1-42, and 3 days later, TSA group, theophylline group, PF431396 (PF group), or normal saline group was given at a volume of 5 µL for rats in each group. Our results showed that HDAC6 may not only lead to the deterioration of learning and memory abilities but also elevate the levels of Aßo and Tau phosphorylation in Aß-induced cognitive dysfunction rats via up-regulating PTK2B.

19.
Neuroreport ; 31(10): 754-761, 2020 07 10.
Article in English | MEDLINE | ID: mdl-32453021

ABSTRACT

The aim of this study was to investigate the effects of histone deacetylase-6 (HDAC6) on the functional and pathological changes of the amyloid beta (Aß)-induced cognitive dysfunction rats by regulating protein tyrosine kinase 2 beta (PTK2B). Ninety Sprague Dawley rats were randomly divided into nine groups, consisting of five experimental groups and four control groups. In five experimental groups, Aß1-42 was infused intracerebroventricularly and 3 days later, rats in each group were infused intracerebroventricularly with tubastatin A hydrochloride (TSA), the HDAC6-specific inhibitor (Aß + TSA group), theophylline, the HDACs agonist (Aß + Theo group), PF431396 (PF), the PTK2B inhibitor (Aß + PF group), the combination of PF and theophylline (Aß + PF + Theo group), and normal saline (Aß + normal saline group), respectively. Rats in four control groups took normal saline that was equivalent to the volume of Aß1-42, and 3 days later, TSA (TSA group), theophylline (Theo group), (PF group, or normal saline group) was given at a volume of 5 µL for rats in each group. Our results showed that HDAC6 may not only lead to the deterioration of learning and memory abilities but also elevate the levels of Aßo and Tau phosphorylation in Aß-induced cognitive dysfunction rats via upregulating PTK2B.


Subject(s)
Amyloid beta-Peptides/metabolism , Cognitive Dysfunction/metabolism , Focal Adhesion Kinase 2/metabolism , Histone Deacetylase 6/metabolism , Amyloid beta-Peptides/toxicity , Animals , Cognitive Dysfunction/chemically induced , Hippocampus/metabolism , Male , Maze Learning/physiology , Rats, Sprague-Dawley
20.
Biomed Pharmacother ; 115: 108890, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31022597

ABSTRACT

OBJECTIVE: Pig brain polypeptides (PBP), active polypeptides hydrolysate extracted from fresh porcine brain tissue, has been shown to have neuroprotective effects in both in vitro and in vivo studies. The present study aimed to explore the molecular mechanisms underlying the neuroprotective effects of PBP in corticosterone (CORT)-induced rat adrenal pheochromocytoma PC12 cells. METHODS: Cell viability and lactate dehydrogenase (LDH) release were measured in PC12 cells induced with 200 µM CORT in the presence or absence of various concentrations of PBP for 48 h. Intracellular reactive oxygen species (ROS) generation, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) and glutathione (GSH) content were examined to analyze the effect of PBP on CORT-induced oxidative stress. The levels of pro-inflammatory factors, the percentage of apoptotic cells, and apoptosis-related protein expression in PC12 cells were determined. RESULTS: PBP is mainly composed of protein subunits with molecular weights ranging from 1000 to 10,000 Da. PBP treatment increased cell viability and decreased the release of LDH in CORT-stimulated PC12 cells. Moreover, PBP reduced the level of CORT-induced oxidative stress by decreasing ROS levels and increasing SOD, GSH-Px activities and GSH content. PBP had an inhibitory effect on the CORT-induced inflammatory response through inhibition of the NF-κB signaling pathway. PBP also inhibited CORT-induced apoptosis by downregulating the mitochondrial apoptotic signaling pathway. CONCLUSION: These results suggest that PBP exerts a neuroprotective effect against CORT-induced cell injury by inhibiting oxidative stress, inflammation, and apoptosis. PBP could act as a neuroprotective agent against nerve injury induced by CORT.


Subject(s)
Apoptosis/drug effects , Brain Chemistry , Corticosterone/toxicity , Inflammation/chemically induced , Oxidative Stress/drug effects , Peptides/pharmacology , Animals , Cell Survival/drug effects , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Glutathione/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Inflammation/prevention & control , L-Lactate Dehydrogenase/metabolism , PC12 Cells , Peptides/chemistry , Rats , Reactive Oxygen Species , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...