Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Adv Mater ; 36(19): e2312548, 2024 May.
Article in English | MEDLINE | ID: mdl-38323869

ABSTRACT

Solid electrolyte interface (SEI) is arguably the most important concern in graphite anodes, which determines their achievable Coulombic efficiency (CE) and cycling stability. In spent graphite anodes, there are already-formed (yet loose and/or broken) SEIs and some residual active lithium, which, if can be inherited in the regenerated electrodes, are highly desired to compensate for the lithium loss due to SEI formation. However, current graphite regenerated approaches easily destroy the thin SEIs and residue active lithium, making their reuse impossible. Herein, this work reports a fast-heating strategy (e.g., 1900 K for ≈150 ms) to upcycle degraded graphite via instantly converting the loose original SEI layer (≈100 nm thick) to a compact and mostly inorganic one (≈10-30 nm thick with a 26X higher Young's Modulus) and still retaining the activity of residual lithium. Thanks to the robust SEI and enclosed active lithium, the regenerated graphite exhibited 104.7% initial CE for half-cell and gifted the full cells with LiFePO4 significantly improved initial CE (98.8% versus 83.2%) and energy density (309.4 versus 281.4 Wh kg-1), as compared with commercial graphite. The as-proposed upcycling strategy turns the "waste" graphite into high-value prelithiated ones, along with significant economic and environmental benefits.

2.
Adv Mater ; 36(14): e2310756, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174831

ABSTRACT

Using Li2S cathodes instead of S cathodes presents an opportunity to pair them with Li-free anodes (e.g., graphite), thereby circumventing anode-related issues, such as poor reversibility and safety, encountered in Li-S batteries. However, the moisture-sensitive nature of Li2S causes the release of hazardous H2S and the formation of insulative by-products, increasing the manufacturing difficulty and adversely affecting cathode performance. Here, Li4SnS4, a Li+ conductor that is air-stable according to the hard-soft acid-base principle, is formed in situ and uniformly on Li2S particles because Li2S itself participates in Li4SnS4 formation. When exposed to air (20% relative humidity), the protective Li4SnS4 layer maintains its components and structure, thus contributing to the enhanced stability of the Li2S@Li4SnS4 composite. In addition, the Li4SnS4 layer can accelerate the sluggish conversion of Li2S because of its favorable interfacial charge transfer, and continuously confine lithium polysulfides owing to its integrity during electrochemical processes. A graphite-Li2S pouch cell containing a Li2S@Li4SnS4 cathode is constructed, which shows stable cyclability with 97% capacity retention after 100 cycles. Hence, combining a desirable air-stable Li2S cathode and a highly reversible Li-free configuration offers potential practical applications of graphite-Li2S full cells.

3.
Adv Mater ; 36(6): e2306244, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37815787

ABSTRACT

Restricted by the available energy storage modes, currently rechargeable aluminum-ion batteries (RABs) can only provide a very limited experimental capacity, regardless of the very high gravimetric capacity of Al (2980 mAh g-1 ). Here, a novel complexation mechanism is reported for energy storage in RABs by utilizing 0D fullerene C70 as the cathode. This mechanism enables remarkable discharge voltage (≈1.65 V) and especially a record-high reversible specific capacity (750 mAh g-1 at 200 mA g-1 ) of RABs. By means of in situ Raman monitoring, mass spectrometry, and density functional theory (DFT) calculations, it is found that this elevated capacity is attributed to the direct complexation of one C70 molecule with 23.5 (super)halogen moieties (superhalogen AlCl4 and/or halogen Cl) in average, forming (super)halogenated C70 ·(AlCl4 )m Cln-m complexes. Upon discharging, decomplexation of C70 ·(AlCl4 )m Cln-m releases AlCl4 - /Cl- ions while preserving the intact fullerene cage. This work provides a new route to realize high-capacity and long-life batteries following the complexation mechanism.

4.
Nanomicro Lett ; 15(1): 234, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874412

ABSTRACT

Lithium (Li) metal electrodes show significantly different reversibility in the electrolytes with different salts. However, the understanding on how the salts impact on the Li loss remains unclear. Herein, using the electrolytes with different salts (e.g., lithium hexafluorophosphate (LiPF6), lithium difluoro(oxalato)borate (LiDFOB), and lithium bis(fluorosulfonyl)amide (LiFSI)) as examples, we decouple the irreversible Li loss (SEI Li+ and "dead" Li) during cycling. It is found that the accumulation of both SEI Li+ and "dead" Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF6 salt. While for the electrolytes with LiDFOB and LiFSI salts, the accumulation of "dead" Li predominates the Li loss. We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could, respectively, function as the "dead" Li and SEI Li+ inhibitors. Inspired by the above understandings, we propose a universal procedure for the electrolyte design of Li metal batteries (LMBs): (i) decouple and find the main reason for the irreversible Li loss; (ii) add the corresponding electrolyte additive. With such a Li-loss-targeted strategy, the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane, triethyl phosphate, and tetrahydrofuran solvents. Our strategy may broaden the scope of electrolyte design toward practical LMBs.

5.
ACS Appl Mater Interfaces ; 15(15): 18763-18770, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37036946

ABSTRACT

In conventional lithium-ion batteries (LIBs), active lithium (Li) ions, which function as charge carriers and could only be supplied by the Li-containing cathodes, are also consumed during the formation of the solid electrolyte interphase. Such irreversible Li loss reduces the energy density of LIBs and is highly desired to be compensated by prelithiation additives. Herein, lithium selenide (Li2Se), which could be irreversibly converted into selenide (Se) at 2.5-3.8 V and thus supplies additional Li, is proposed as a cathode prelithiation additive for LIBs. Compared with previously reported prelithiation reagents (e.g., Li6CoO4, Li2O, and Li2S), the delithiation of Li2Se not only delivers a high specific capacity but also avoids gas release and incompatibility with carbonate electrolytes. The electrochemical characterizations show that with the addition of 6 wt % Li2Se to the LiFePO4 (LFP) cathodes, a 9% increase in the initial specific capacity in half Li||LFP cells and a 19.8% increase in the energy density (based on the total mass of the two electrodes' materials) could be achieved without sacrificing the other battery performance. This work demonstrates the possibility to use Li2Se as a high-efficiency prelithiation additive for LIBs and provides a solution to the high-energy LIBs.

6.
Adv Mater ; 35(20): e2211961, 2023 May.
Article in English | MEDLINE | ID: mdl-36841926

ABSTRACT

Stable zinc (Zn)/electrolyte interface is critical for developing rechargeable aqueous Zn-metal batteries with long-term stability, which requires the dense and stable Zn electrodeposition. Herein, an interfacial lattice locking (ILL) layer is constructed via the electro-codeposition of Zn and Cu onto the Zn electrodes. The ILL layer shows a low lattice misfit (δ = 0.036) with Zn(002) plane and selectively locks the lattice orientation of Zn deposits, enabling the epitaxial growth of Zn deposits layer by layer. Benefiting from the unique orientation-guiding and robustly adhered properties, the ILL layer enables the symmetric Zn||Zn cells to achieve an ultralong life span of >6000 h at 1 mA cm-2 and 1 mAh cm-2 , a low overpotential (65 mV) at 10 mAh cm-2 , and a stable Zn plating/stripping for >90 h at an ultrahigh Zn depth of discharge (≈85%). Even with a limited Zn supply and a high current density (8.58 mA cm-2 ), the ILL@Zn||Ni-doped MnO2 cells can still survive for >2300 cycles.

7.
Adv Mater ; 35(25): e2210055, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36637812

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) are promising energy storage solutions with low cost and superior safety, but they suffer from chemical and electrochemical degradations closely related to the electrolyte. Here, a new zinc salt design and a drop-in solution for long cycle-life aqueous ZIBs are reported. The salt Zn(BBI)2 with a rationally designed anion group, N-(benzenesulfonyl)benzenesulfonamide (BBI- ), has a special amphiphilic molecular structure, which combines the benefits of hydrophilic and hydrophobic groups to properly tune the solubility and interfacial condition. This new zinc salt does not contain fluorine and is synthesized via a high-yield and low-cost method. It is shown that 1 m Zn(BBI)2 aqueous electrolyte with a widened cathodic stability window effectively stabilizes Zn metal/H2 O interface, mitigates chemical and electrochemical degradations, and enables both symmetric and full cells using a zinc-metal electrode.

8.
Angew Chem Int Ed Engl ; 62(9): e202218803, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36596979

ABSTRACT

The use of non-solvating, or as-called sparingly-solvating, electrolytes (NSEs), is regarded as one of the most promising solutions to the obstacles to the practical applications of Li-S batteries. However, it remains a puzzle that long-life Li-S batteries have rarely, if not never, been reported with NSEs, despite their good compatibility with Li anode. Here, we find the capacity decay of Li-S batteries in NSEs is mainly due to the accumulation of the dead Li2 S at the cathode side, rather than the degradation of the anodes or electrolytes. Based on this understanding, we propose an electrochemical strategy to reactivate the accumulated Li2 S and revive the dead Li-S batteries in NSEs. With such a facile approach, Li-S batteries with significantly improved cycling stability and accelerated dynamics are achieved with diglyme-, acetonitrile- and 1,2-dimethoxyethane-based NSEs. Our finding may rebuild the confidence in exploiting non-solvating Li-S batteries with practical competitiveness.

9.
ACS Appl Mater Interfaces ; 14(41): 46457-46470, 2022 Oct 19.
Article in English | MEDLINE | ID: mdl-36194475

ABSTRACT

Due to the poor electronic conductivity of solid sulfur and sulfides, the dissolution of Sα- (α = 0, 2/8, 2/6, 2/4) into a liquid electrolyte and the vehicular diffusion of Sα- to carbon black are necessary for the electrochemical activity of a sulfur cathode in lithium-sulfur (Li-S) batteries. However, exactly how much dissolution and diffusion are required for high sulfur utilization and how this may control the minimum electrolyte/sulfur ratio, (E/S)min, have not been quantitatively settled. In this work, we show experimentally that a dissolved polysulfide concentration which is too high (>10-20 MS) may gel the liquid electrolyte, leading to catastrophic loss of Sα- mobility, a failure mode that is especially susceptible in a high-donor-number (DN) electrolyte under a lean condition (low E/S), similar to a traffic jam, resulting in high electrochemical polarization and low sulfur utilization. In contrast, we show that a low-DN electrolyte, even with a low polysulfide solubility of 0.1-0.5 MS, will never encounter a gelation catastrophe even at extremely low E/S, leading to unprecedentedly high energy density. Specifically, high sulfur utilizations of 96% (1600 mAh g-1) and 78% (1300 mAh g-1) are reached in an electrolyte as lean as E/S = 2 and 1 µL mg-1 Li-S coin cells when DME1.6LiFSI-HFE of low solvation capability (DN = 13.9) is adopted, even paired against a high-sulfur-loading cathode (5 mg cm-2).

10.
Adv Sci (Weinh) ; 7(9): 1903168, 2020 May.
Article in English | MEDLINE | ID: mdl-32382480

ABSTRACT

Lean electrolyte (small E/S ratio) is urgently needed to achieve high practical energy densities in Li-S batteries, but there is a distinction between the cathode's absorbed electrolyte (AE) which is cathode-intrinsic and total added electrolyte (E) which depends on cell geometry. While total pore volume in sulfur cathodes affects AE/S and performance, it is shown here that pore morphology, size, connectivity, and fill factor all matter. Compared to conventional thermally dried sulfur cathodes that usually render "open lakes" and closed pores, a freeze-dried and compressed (FDS-C) sulfur cathode is developed with a canal-capillary pore structure, which exhibits high mean performance and greatly reduces cell-to-cell variation, even at high sulfur loading (14.2 mg cm-2) and ultralean electrolyte condition (AE/S = 1.2 µL mg-1). Interestingly, as AE/S is swept from 2 to 1.2 µL mg-1, the electrode pores go from fully flooded to semi-flooded, and the coin cell still maintains function until (AE/S)min ≈ 1.2 µL mg-1 is reached. When scaled up to Ah-level pouch cells, the full-cell energy density can reach 481 Wh kg-1 as its E/S ≈ AE/S ratio can be reduced to 1.2 µL mg-1, proving high-performance pouch cells can actually be working in the ultralean, semi-flooded regime.

11.
Angew Chem Int Ed Engl ; 59(33): 13908-13914, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32372538

ABSTRACT

For Li-Se batteries, ether- and carbonate-based electrolytes are commonly used. However, because of the "shuttle effect" of the highly dissoluble long-chain lithium polyselenides (LPSes, Li2 Sen , 4≤n≤8) in the ether electrolytes and the sluggish one-step solid-solid conversion between Se and Li2 Se in the carbonate electrolytes, a large amount of porous carbon (>40 wt % in the electrode) is always needed for the Se cathodes, which seriously counteracts the advantage of Se electrodes in terms of volumetric capacity. Herein an acetonitrile-based electrolyte is introduced for the Li-Se system, and a two-plateau conversion mechanism is proposed. This new Li-Se chemistry not only avoids the shuttle effect but also facilitates the conversion between Se and Li2 Se, enabling an efficient Se cathode with high Se utilization (97 %) and enhanced Coulombic efficiency. Moreover, with such a designed electrolyte, a highly compact Se electrode (2.35 gSe cm-3 ) with a record-breaking Se content (80 wt %) and high Se loading (8 mg cm-2 ) is demonstrated to have a superhigh volumetric energy density of up to 2502 Wh L-1 , surpassing that of LiCoO2 .

SELECTION OF CITATIONS
SEARCH DETAIL
...