Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(8): eadl2238, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38394209

ABSTRACT

Skeletal stem cells (SSCs) that are capable of self-renewal and multipotent differentiation contribute to bone development and homeostasis. Several populations of SSCs at different skeletal sites have been reported. Here, we identify a metaphyseal SSC (mpSSC) population whose transcriptional landscape is distinct from other bone mesenchymal stromal cells (BMSCs). These mpSSCs are marked by Sstr2 or Pdgfrb+Kitl-, located just underneath the growth plate, and exclusively derived from hypertrophic chondrocytes (HCs). These HC-derived mpSSCs have properties of self-renewal and multipotency in vitro and in vivo, producing most HC offspring postnatally. HC-specific deletion of Hgs, a component of the endosomal sorting complex required for transport, impairs the HC-to-mpSSC conversion and compromises trabecular bone formation. Thus, mpSSC is the major source of BMSCs and osteoblasts in bone marrow, supporting the postnatal trabecular bone formation.


Subject(s)
Cancellous Bone , Mesenchymal Stem Cells , Stem Cells , Bone and Bones , Cell Differentiation , Osteoblasts , Osteogenesis/genetics
2.
Oral Dis ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297969

ABSTRACT

OBJECTIVES: To explore the effect of protein arginine methyltransferase 5 (PRMT5) on tooth extraction sockets healing, we established an extraction sockets model in osteoblast-conditional Prmt5 knockout mice. The results provided clues for promoting extraction sockets healing in clinical settings. MATERIALS AND METHODS: Maxillary first molars were extracted from 6 to 8-week-old mice to establish an extraction fossa model. Microcomputed tomography (Micro-CT), histology, and immunostaining assays were performed on samples harvested at 3-, 7-, and 14-day post-extraction. Prmt5-silenced cell lines  were employed to explore the regulatory mechanisms underlying the osteigenic differentiation. RESULTS: PRMT5 expression was higher in the early stage of socket healing. Micro-CT analysis showed that the percentage of new bone in the extraction sockets was lower in OC-Cre; Prmt5fl/fl mice than in the control group, consistent with Masson staining. We found that, Prmt5 deficiency delayed the osteogenesis during extraction socket healing, which might be achieved through the decrease of H4R3me2s in the Sp7 promoter region. CONCLUSION: PRMT5 in osteoblasts may promote the differentiation of osteoblasts by regulating the Sp7 promoter H4R3me2s and participate in the healing of tooth extraction sockets.

3.
Cell Discov ; 9(1): 59, 2023 Jun 17.
Article in English | MEDLINE | ID: mdl-37330497

ABSTRACT

Virus spillover remains a major challenge to public health. A panel of SARS-CoV-2-related coronaviruses have been identified in pangolins, while the infectivity and pathogenicity of these pangolin-origin coronaviruses (pCoV) in humans remain largely unknown. Herein, we comprehensively characterized the infectivity and pathogenicity of a recent pCoV isolate (pCoV-GD01) in human cells and human tracheal epithelium organoids and established animal models in comparison with SARS-CoV-2. pCoV-GD01 showed similar infectivity to SARS-CoV-2 in human cells and organoids. Remarkably, intranasal inoculation of pCoV-GD01 caused severe lung pathological damage in hACE2 mice and could transmit among cocaged hamsters. Interestingly, in vitro neutralization assays and animal heterologous challenge experiments demonstrated that preexisting immunity induced by SARS-CoV-2 infection or vaccination was sufficient to provide at least partial cross-protection against pCoV-GD01 challenge. Our results provide direct evidence supporting pCoV-GD01 as a potential human pathogen and highlight the potential spillover risk.

4.
EBioMedicine ; 89: 104457, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36739631

ABSTRACT

BACKGROUND: Zika virus (ZIKV) is an emerging arbovirus of the genus flavivirus that is associated with congenital Zika syndrome (CZS) in newborns. A wide range of clinical symptoms including intellectual disability, speech delay, coordination or movement problems, and hearing and vision loss, have been well documented in children with CZS. However, whether ZIKV can invade the olfactory system and lead to post-viral olfactory dysfunction (PVOD) remains unknown. METHODS: We investigated the susceptibility and biological responses of the olfactory system to ZIKV infection using mouse models and human olfactory organoids derived from patient olfactory mucosa. FINDINGS: We demonstrate that neonatal mice infected with ZIKV suffer from transient olfactory dysfunction when they reach to puberty. Moreover, ZIKV mainly targets olfactory ensheathing cells (OECs) and exhibits broad cellular tropism colocalizing with small populations of mature/immature olfactory sensory neurons (mOSNs/iOSNs), sustentacular cells and horizontal basal cells in the olfactory mucosa (OM) of immunodeficient AG6 mice. ZIKV infection induces strong antiviral immune responses in both the olfactory mucosa and olfactory bulb tissues, resulting in the upregulation of proinflammatory cytokines/chemokines and genes related to the antiviral response. Histopathology and transcriptomic analysis showed typical tissue damage in the olfactory system. Finally, by using an air-liquid culture system, we showed that ZIKV mainly targets sustentacular cells and OECs and support robust ZIKV replication. INTERPRETATION: Our results demonstrate that olfactory system represents as significant target for ZIKV infection, and that PVOD may be neglected in CZS patients. FUNDING: Stated in the acknowledgment.


Subject(s)
Olfaction Disorders , Zika Virus Infection , Zika Virus , Infant, Newborn , Child , Humans , Mice , Animals , Virus Replication , Antiviral Agents/therapeutic use
5.
Int J Biol Sci ; 18(11): 4329-4340, 2022.
Article in English | MEDLINE | ID: mdl-35864961

ABSTRACT

Previous studies have demonstrated the in vitro oncogenic role of protein arginine methyltransferase 5 (PRMT5) in gastric cancer cell lines. The in vivo function of PRMT5 in gastric tumorigenesis, however, is still unexplored. Here, we showed that Prmt5 deletion in mouse gastric epithelium resulted in spontaneous tumorigenesis in gastric antrum. All Prmt5-deficient mice displayed intestinal-type gastric cancer within 4 months of age. Of note, 20% (2/10) of Prmt5 mutants finally developed into invasive gastric cancer by 8 months of age. Gastric cancer caused by PRMT5 loss exhibited the increase in Lgr5+ stem cells, which are proposed to contribute to both the gastric tumorigenesis and progression in mouse models. Consistent with the notion that Lgr5 is the target of Wnt/ß-catenin signaling, whose activation is the most predominant driver for gastric tumorigenesis, Prmt5 mutant gastric cancer showed the activation of Wnt/ß-Catenin signaling. Furthermore, in human gastric cancer samples, PRMT5 deletion and downregulation were frequently observed and associated with the poor prognosis. We propose that as opposed to the tumor-promoting role of PRMT5 well-established in the progression of various cancer types, PRMT5 functions as a tumor suppressor in vivo, at least during gastric tumor formation.


Subject(s)
Protein-Arginine N-Methyltransferases , Stomach Neoplasms , Wnt Signaling Pathway , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Mice , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Stomach Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism
6.
Genesis ; 60(6-7): e23488, 2022 07.
Article in English | MEDLINE | ID: mdl-35765931

ABSTRACT

Indian hedgehog (Ihh), a member of the Hh family, plays important roles in vertebrate development and homeostasis. To improve our understanding of the function of Ihh-expressing cells and their progeny as well, we generate an Ihh-mKate2tomm20 -Dre knock-in mouse line that can label Ihh-positive cells with a fluorescence protein mKate2 and trace Ihh-positive cells and their progeny via Dre-mediated recombination. Consistent with previous reports, we verified Ihh expression in hypertrophic chondrocytes of growth plate and granulosa cells of ovarian follicles by mKate2 immunostaining, and meanwhile confirmed Dre activity in these cells via a Dre reporter mouse line Rosa26-confetti2. We also found, for the first time, that Ihh can mark some cell types, including retinal ganglion cells, Purkinje cells, and gallbladder epithelial cells. Taken together, the Ihh-mKate2tomm20 -Dre mouse is a genetic tool for examining the precise expression profile of Ihh and tracing Ihh-expressing cells and their progeny.


Subject(s)
Growth Plate , Hedgehog Proteins , Animals , Cell Differentiation , Chondrocytes/metabolism , Female , Fluorescent Antibody Technique , Growth Plate/metabolism , Hedgehog Proteins/genetics , Mice , Vertebrates
7.
Nat Commun ; 12(1): 5654, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34580297

ABSTRACT

There is an urgent need for animal models to study SARS-CoV-2 pathogenicity. Here, we generate and characterize a novel mouse-adapted SARS-CoV-2 strain, MASCp36, that causes severe respiratory symptoms, and mortality. Our model exhibits age- and gender-related mortality akin to severe COVID-19. Deep sequencing identified three amino acid substitutions, N501Y, Q493H, and K417N, at the receptor binding domain (RBD) of MASCp36, during in vivo passaging. All three RBD mutations significantly enhance binding affinity to its endogenous receptor, ACE2. Cryo-electron microscopy analysis of human ACE2 (hACE2), or mouse ACE2 (mACE2), in complex with the RBD of MASCp36, at 3.1 to 3.7 Å resolution, reveals the molecular basis for the receptor-binding switch. N501Y and Q493H enhance the binding affinity to hACE2, whereas triple mutations at N501Y/Q493H/K417N decrease affinity and reduce infectivity of MASCp36. Our study provides a platform for studying SARS-CoV-2 pathogenesis, and unveils the molecular mechanism for its rapid adaptation and evolution.


Subject(s)
COVID-19/diagnosis , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , Animals , Binding Sites/genetics , COVID-19/mortality , COVID-19/virology , Disease Models, Animal , Female , Humans , Male , Mice , Protein Binding/genetics , Protein Domains/genetics , SARS-CoV-2/genetics , Severity of Illness Index , Spike Glycoprotein, Coronavirus/genetics
8.
J Mol Biol ; 425(21): 4023-33, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23920358

ABSTRACT

A fundamental goal of medical genetics is the accurate prediction of genotype-phenotype correlations. As an approach to develop more accurate in silico tools for prediction of disease-causing mutations of structural proteins, we present a gene- and disease-specific prediction tool based on a large systematic analysis of missense mutations from hemophilia A (HA) patients. Our HA-specific prediction tool, HApredictor, showed disease prediction accuracy comparable to other publicly available prediction software. In contrast to those methods, its performance is not limited to non-synonymous mutations. Given the role of synonymous mutations in disease and drug codon optimization, we propose that utilizing a gene- and disease-specific method can be highly useful to make functional predictions possible even for synonymous mutations. Incorporating computational metrics at both nucleotide and amino acid levels along with multiple protein sequence/structure alignment significantly improved the predictive performance of our tool. HApredictor is freely available for download at http://www.ncbi.nlm.nih.gov/CBBresearch/Przytycka/HA_Predict/index.htm.


Subject(s)
Hemophilia A/genetics , Mutation, Missense , Point Mutation , Factor VIII/genetics , Genetic Association Studies/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...