Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1344647, 2024.
Article in English | MEDLINE | ID: mdl-38450409

ABSTRACT

Appropriate straw incorporation has ample agronomic and environmental benefits, but most studies are limited to straw mulching or application on the soil surface. To determine the effect of depth of straw incorporation on the crop yield, soil organic carbon (SOC), total nitrogen (TN) and greenhouse gas emission, a total of 4 treatments were set up in this study, which comprised no straw returning (CK), straw returning at 15 cm (S15), straw returning at 25 cm (S25) and straw returning at 40 cm (S40). The results showed that straw incorporation significantly increased SOC, TN and C:N ratio. Compared with CK treatments, substantial increases in the grain yield (by 4.17~5.49% for S15 and 6.64~10.06% for S25) were observed under S15 and S25 treatments. S15 and S25 could significantly improve the carbon and nitrogen status of the 0-40 cm soil layer, thereby increased maize yield. The results showed that the maize yield was closely related to the soil carbon and nitrogen index of the 0-40 cm soil layer. In order to further evaluate the environmental benefits of straw returning, this study measured the global warming potential (GWP) and greenhouse gas emission intensity (GHGI). Compared with CK treatments, the GWP of S15, S25 and S40 treatments was increased by 9.35~20.37%, 4.27~7.67% and 0.72~6.14%, respectively, among which the S15 treatment contributed the most to the GWP of farmland. GHGI is an evaluation index of low-carbon agriculture at this stage, which takes into account both crop yield and global warming potential. In this study, GHGI showed a different trend from GWP. Compared with CK treatments, the S25 treatments had no significant difference in 2020, and decreased significantly in 2021 and 2022. This is due to the combined effect of maize yield and cumulative greenhouse gas emissions, indicating that the appropriate straw returning method can not only reduce the intensity of greenhouse gas emissions but also improve soil productivity and enhance the carbon sequestration effect of farmland soil, which is an ideal soil improvement and fertilization measure.

2.
Plants (Basel) ; 12(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111828

ABSTRACT

Carbon nanotubes (MWCNTs) and nano-silica (nano-SiO2) are widely used in the field of life science because of their special physical and chemical properties. In this study, the effects of different concentrations of MWCNTs (0 mg·L-1, 200 mg·L-1, 400 mg·L-1, 800 mg·L-1 and 1200 mg·L-1) and nano-SiO2 (0 mg·L-1, 150 mg·L-1, 800 mg·L-1, 1500 mg·L-1 and 2500 mg·L-1) on maize seedling growth and relative mechanisms were explored. The main results are as follows: MWCNTs and nano-SiO2 can promote the growth of maize seedlings, and promote plant height, root length, the dry and fresh weight of seedlings, root-shoot ratio and so on. The ability to accumulate dry matter increased, the relative water content of leaves increased, the electrical conductivity of leaves decreased, the stability of cell membranes improved and the water metabolism ability of maize seedlings increased. The treatment of MWCNTs with 800 mg·L-1 and nano-SiO2 with 1500 mg·L-1 had the best effect on seedling growth. MWCNTs and nano-SiO2 can promote the development of root morphology, increase root length, root surface area, average diameter, root volume and total root tip number and improve root activity, so as to improve the absorption capacity of roots to water and nutrition. After MWCNT and nano-SiO2 treatment, compared with the control, the contents of O2·- and H2O2 decreased, and the damage of reactive oxygen free radicals to cells decreased. MWCNTs and nano-SiO2 can promote the clearance of reactive oxygen species and maintain the complete structure of cells, so as to slow down plant aging. The promoting effect of MWCNTs treated with 800 mg·L-1 and nano-SiO2 treated with 1500 mg·L-1 had the best effect. After treatment with MWCNTs and nano-SiO2, the activities of key photosynthesis enzymes PEPC, Rubisco, NADP-ME, NADP-MDH and PPDK of maize seedlings increased, which promoted the opening of stomata, improved the fixation efficiency of CO2, improved the photosynthetic process of maize plants and promoted plant growth. The promoting effect was the best when the concentration of MWCNTs was 800 mg·L-1 and the concentration of nano-SiO2 was 1500 mg·L-1. MWCNTs and nano-SiO2 can increase the activities of the enzymes GS, GOGAT, GAD and GDH related to nitrogen metabolism in maize leaves and roots, and can increase the content of pyruvate, so as to promote the synthesis of carbohydrates and the utilization of nitrogen and promote plant growth.

3.
Environ Pollut ; 321: 121142, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36702430

ABSTRACT

Herein, polyethyleneimine (PEI)-grafted nitrogen-doping magnetic hydrochar (PEIMW@MNHC) was synthesized for hexavalent chromium (Cr(VI)) and bisphenol A (BPA) elimination from water. Characterizations exhibited that abundant amino functional groups, intramolecular heterocyclic N, azo and Fe-NX structures were successfully introduced into the inherent structure of hydrochar. The obtained PEIMW@MNHC presented maximum uptake of 205.37 and 180.79 mg/g for Cr(VI) and BPA, respectively, and was highly tolerant to various co-existing ions. Mechanism investigation revealed that the protonated amino, intramolecular heterocyclic N and Fe(II) participated in Cr(VI) reduction, and the N/O-containing groups and Fe(III) fixed Cr(III) onto PEIMW@MNHC by the formation of complexes and precipitates. On the other hand, azo, Fe-NX and graphitic N structures contributed to the removal of BPA via pore filling, hydrogen bonding and π-π interactions. Additionally, PEIMW@MNHC maintained over 85.0% removal efficiency for Cr(VI) and BPA after four cycles, manifesting that PEIMW@MNHC was an ideal adsorbent with outstanding practical application potential.


Subject(s)
Polyethyleneimine , Water Pollutants, Chemical , Polyethyleneimine/chemistry , Adsorption , Ferric Compounds , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Water/chemistry , Chromium/chemistry , Kinetics , Magnetic Phenomena
4.
Front Microbiol ; 13: 1003157, 2022.
Article in English | MEDLINE | ID: mdl-36545193

ABSTRACT

Corn straw is an abundant lignocellulose resource and by-product of agricultural production. With the continuous increase in agricultural development, the output of corn straw is also increasing significantly. However, the inappropriate disposal of straw results in wasting of resources, and also causes a serious ecological crisis. Screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. For this purpose, our research group isolated three actinomycete strains with efficient lignocellulose degradation ability from soil in the cold region of China: Streptomyces sp. G1T, Streptomyces sp. G2T and Streptomyces sp. G3T. Their microbial properties and taxonomic status were assessed to improve our understanding of these strains. The three strains showed typical characteristics of the genus Streptomyces, and likely represent three different species. Genome functional annotation indicated that most of their genes were related to functions like carbohydrate transport and metabolism. In addition, a similar phenomenon also appeared in the COG and CAZyme analyses, with a large number of genes encoding carbohydrate-related hydrolases, such as cellulase, glycosidase and endoglucanase, which could effectively destroy the structure of lignocellulose in corn straw. This unambiguously demonstrated the potential of the three microorganisms to hydrolyze macromolecular polysaccharides at the molecular level. In addition, in the straw-returning test, the decomposing consortium composed of the three Streptomyces isolates (G123) effectively destroyed the recalcitrant bonds between the various components of straw, and significantly reduced the content of active components in corn straw. Furthermore, microbial diversity analysis indicated that the relative abundance of Proteobacteria, reportedly associated with soil antibiotic resistance and antibiotic degradation, was significantly improved with straw returning at both tested time points. The microbial diversity of each treatment was also dramatically changed by supplementing with G123. Taken together, G123 has important biological potential and should be further studied, which will provide new insights and strategies for appropriate treatment of corn straw.

5.
Sci Rep ; 12(1): 14620, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36028556

ABSTRACT

Maize (Zea mays L.) is one of the most widely distributed and important crops in China. Maize ear differentiation plays an important role grain yield formation. However, it is unclear if ear and root morphophysiology status affects yield formation by altering ear differentiation and development under different nitrogen (N) conditions. The aim of this study is to understand how the ear differentiation and development are affected by ear and root morphophysiology traits, as affected by the N rate. The experiment consisted of two N rates: high nitrogen (180 kg ha-1), and low nitrogen (60 kg ha-1). Two N-efficient varieties (NEVs) and two N-inefficient varieties (NIVs) were grown in the field. The results showed higher nitrogen accumulation and grain yield in NEVs than in NIVs, which was mainly attributed to the increased N uptake by the larger root system under both N conditions. Under high N conditions, among ear differentiation-related traits, only FR was significantly positively correlated with grain yield, and NEVs ensure FR through higher N concentration and ZR content in ear at the fertilization stage. Under low N conditions, NEVs obtained higher FP, SR and FR through higher N concentration and IAA in ear at the early stage of ear differentiation, maintained lower AR and BTL by higher RA, R-ZR and E-ZR at the late stage of ear growth. These results suggest that NEVs have a more complex mechanism for obtaining higher grain yield under low N conditions than N sufficiency, and that phytohormones play an important role in this process.


Subject(s)
Nitrogen , Zea mays , Edible Grain , Plant Growth Regulators , Plant Structures
6.
Front Plant Sci ; 13: 754232, 2022.
Article in English | MEDLINE | ID: mdl-35812983

ABSTRACT

High-density planting aggravates competition among plants and has a negative impact on plant growth and productivity. Nitrogen application and chemical control can improve plant growth and increase grain yield in high-density planting. Our experiment explored the effects of nitrogen fertilizer and plant growth regulators on maize root-bleeding sap, phosphorus (P) and potassium (K) accumulation and translocation, and grain yield and quality in high-density planting. We established a field study during the 2017 and 2018 growing seasons, with three nitrogen levels of N100 (100 kg ha-1), N200 (200 kg ha-1), and N300 (300 kg ha-1) at high-density planting (90,000 plants ha-1), and applied Yuhuangjin (a plant growth regulator mixture of 3% DTA-6 and 27% ethephon) at the 7th leaf. Our results showed that N200 application combined with chemical control could regulate amino acid and mineral nutrient concentration delivery rates in root-bleeding sap and improve its sap rate. Also, the treated plant exhibited higher P and K uptake and translocation ability. Furthermore, chemical control and N200 treatment maintained a high level of ribulose-1,5-bisphosphate carboxylase (RuBPCase), phosphoenolpyruvate carboxylase (PEPCase), nitrate reductase (NR), and glutamine synthetase (GS) enzymatic activities in leaves. In addition, plant growth regulator and nitrogen application improved the enzymatic activities of GS, glutamate dehydrogenase (GDH), and glutamic pyruvic transaminase (GPT) and the contents of crude protein, lysine, sucrose, and soluble sugar in grain and ultimately increased maize yield. This study suggests that N200 application in combination with chemical control promotes root vitality and nutrient accumulation and could improve grain yield and quality in high-density planting.

7.
Antonie Van Leeuwenhoek ; 113(12): 2053-2062, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33047275

ABSTRACT

A novel cellulase-producing actinomycete strain Gxj-6T, isolated from soil in the cold region (Heihe city, Heilongjiang province, the northernmost part of China), subjected to a taxonomic study using a polyphasic approach. In the neighbour-joining phylogenetic tree based on 16S rRNA gene sequences, strain Gxj-6T fell within the clade comprising the type strains of species of the genus Microbispora. 16S rRNA gene sequence similarity studies exhibited that species Gxj-6T was most closely related to Microbispora bryophytorum NEAU-TX2-2T (99.45%), Microbispora fusca NEAU-HEGS1-5T (99.41%), Microbispora camponoti 2C-HV3T (99.31%) and Microbispora rosea subsp. rosea JCM 3006T (98.68%). Organism Gxj-6T contained MK-9(H2) as the predominant ubiquinone and C18:0 10-methyl as the major fatty acid. The major polar lipids of culture Gxj-6T were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol mannoside, three unidentified phospholipids, two unidentified glycolipids and two unidentified lipids. The DNA G+C content of strain Gxj-6T was 71.25 mol%. The morphological and chemotaxonomic properties of the strain are also consistent with those members of the genus Microbispora. Combinated with the lower DNA-DNA relatedness values, phenotypic properties, physiology and biochemistry distinctiveness with other recognized species strains, revealed that strain Gxj-6T is separated from other phylogenetically closely species of the genus Microbispora. Therefore, strain Gxj-6T is considered to represent a novel species of the genus Microbispora, for which the name Microbispora cellulosiformans sp. nov. is proposed. The type strain is Gxj-6T (= CGMCC 4.7605T = DSM 109712T).


Subject(s)
Actinobacteria , Cellulases , Actinobacteria/genetics , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil , Soil Microbiology
8.
BMC Plant Biol ; 20(1): 348, 2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32703161

ABSTRACT

BACKGROUND: Soil salinity restricts plant growth and productivity. 2-(3,4-dichlorophenoxy) triethylamine (DCPTA) can alleviate salinity stress in plants. However, the mechanism of DCPTA-mediated salinity tolerance has not been fully clarified. We aimed to investigate its role in enhancing photosynthetic capacity, improving water status, maintaining K+/Na+ homeostasis and alleviating salinity stress in maize (Zea mays L.). RESULTS: In present study, maize seedlings were grown in nutrient solutions with a combination of NaCl (0, 150 mM) and DCPTA (0, 20, 100, and 400 µM). And photosynthesis, water status, ion homeostasis and the expression of genes involved in ion uptake and transport were evaluated in the maize seedlings. The results demonstrated that DCPTA alleviated the growth inhibition of maize seedlings exposed to salinity stress by increasing the net photosynthetic rate (Pn) and the quantum efficiency of photosystem II (PSII) photochemistry. DCPTA improved the root hydraulic conductivity, which help maintained the water status. A relatively high K+ concentration but a relatively low Na+ concentration and the Na+/K+ ratio were observed in the presence of DCPTA under salinity stress. Additionally, DCPTA altered the expression of four genes (ZmSOS1, ZmHKT1, ZmNHX1 and ZmSKOR) that encode membrane transport proteins responsible for K+/Na+ homeostasis. CONCLUSIONS: DCPTA improved the salinity tolerance of maize may be associated with enhanced photosynthetic capacity, maintenance of water status and altered expression of genes involved in ion uptake and transport.


Subject(s)
Ethylamines/pharmacology , Salt Stress/drug effects , Zea mays/drug effects , Zea mays/physiology , Chlorophyll/metabolism , Gene Expression Regulation, Plant/drug effects , Homeostasis/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Potassium/metabolism , Salt Stress/physiology , Salt Tolerance/drug effects , Sodium/metabolism , Water/metabolism
9.
J Plant Physiol ; 248: 153158, 2020 May.
Article in English | MEDLINE | ID: mdl-32240968

ABSTRACT

Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.


Subject(s)
Etiolation , Lysine/metabolism , Metabolome , Plant Proteins/metabolism , Sunlight , Zea mays/physiology , Acetylation , Zea mays/radiation effects
10.
Genomics Proteomics Bioinformatics ; 18(4): 397-414, 2020 08.
Article in English | MEDLINE | ID: mdl-33385613

ABSTRACT

De-etiolation consists of a series of developmental and physiological changes that a plant undergoes in response to light. During this process light, an important environmental signal, triggers the inhibition of mesocotyl elongation and the production of photosynthetically active chloroplasts, and etiolated leaves transition from the "sink" stage to the "source" stage. De-etiolation has been extensively studied in maize (Zea mays L.). However, little is known about how this transition is regulated. In this study, we described a quantitative proteomic and phosphoproteomic atlas of the de-etiolation process in maize. We identified 16,420 proteins in proteome, among which 14,168 proteins were quantified. In addition, 8746 phosphorylation sites within 3110 proteins were identified. From the combined proteomic and phosphoproteomic data, we identified a total of 17,436 proteins. Only 7.0% (998/14,168) of proteins significantly changed in abundance during de-etiolation. In contrast, 26.6% of phosphorylated proteins exhibited significant changes in phosphorylation level; these included proteins involved in gene expression and homeostatic pathways and rate-limiting enzymes involved in photosynthetic light and carbon reactions. Based on phosphoproteomic analysis, 34.0% (1057/3110) of phosphorylated proteins identified in this study contained more than 2 phosphorylation sites, and 37 proteins contained more than 16 phosphorylation sites, indicating that multi-phosphorylation is ubiquitous during the de-etiolation process. Our results suggest that plants might preferentially regulate the level of posttranslational modifications (PTMs) rather than protein abundance for adapting to changing environments. The study of PTMs could thus better reveal the regulation of de-etiolation.


Subject(s)
Seedlings , Zea mays , Etiolation , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Proteomics , Seedlings/genetics , Seedlings/metabolism , Zea mays/genetics , Zea mays/metabolism
11.
Planta ; 243(2): 501-17, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26497871

ABSTRACT

MAIN CONCLUSION : Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins. The abundance of nearly 692 phosphorylated peptides containing 783 phosphosites was reproducible and profiled with high confidence among treatments. Comparisons with other large-scale phosphoproteomic studies revealed that 473 of the phosphosites are novel to this study. Of the 783 phosphosites identified, 171, 79, and 138 were identified in 0, 6, and 12 h samples, respectively, which suggest that regulation of phosphorylation plays important roles during maize seedling de-etiolation. Our experimental methods included enrichment of phosphoproteins, allowing the identification of a great number of low abundance proteins, such as transcription factors, protein kinases, and photoreceptors. Most of the identified phosphoproteins were involved in gene transcription, post-transcriptional regulation, or signal transduction, and only a few were involved in photosynthesis and carbon metabolism. It is noteworthy that tyrosine phosphorylation and calcium signaling pathways might play important roles during maize seedling de-etiolation. Taken together, we have elucidated a new level of complexity in light-induced reversible protein phosphorylation during maize seedling de-etiolation.


Subject(s)
Phosphoproteins/metabolism , Plant Proteins/metabolism , Zea mays/metabolism , Phosphoproteins/genetics , Plant Proteins/genetics , Proteomics , Seedlings/growth & development , Seedlings/metabolism , Signal Transduction , Zea mays/growth & development
12.
Mol Biol Rep ; 41(5): 3431-43, 2014 May.
Article in English | MEDLINE | ID: mdl-24700167

ABSTRACT

Salt (NaCl) is a common physiological stressor of plants. To better understand how germinating seeds respond to salt stress, we examined the changes that occurred in the proteome of maize seeds during NaCl-treated germination. Phenotypically, salt concentrations less than 0.2 M appear to delay germination, while higher concentrations disrupt development completely, leading to seed death. The identities of 96 proteins with expression levels altered by NaCl-incubation were established using 2-DE-MALDI-TOF-MS and 2-DE-MALDI-TOF-MS/MS. Of these 96 proteins, 79 were altered greater than twofold when incubated with a 0.2 M salt solution, while 51 were altered when incubated with a 0.1 M salt solution. According to their functional annotations in the Swiss-Prot protein-sequence databases, these proteins are mainly involved in seed storage, energy metabolism, stress response, and protein metabolism. Notably, the expression of proteins that respond to abscisic acid signals increased in response to salt stress. The results of this study provide important clues as to how NaCl stresses the physiology of germinating maize seeds.


Subject(s)
Germination , Proteome , Proteomics , Seeds/metabolism , Sodium Chloride/metabolism , Stress, Physiological , Zea mays/metabolism , Energy Metabolism , Phenotype , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Folding , Protein Stability , Proteomics/methods , Salt Tolerance/genetics , Seeds/drug effects , Sodium Chloride/pharmacology , Zea mays/drug effects
13.
Plant Mol Biol ; 85(1-2): 95-105, 2014 May.
Article in English | MEDLINE | ID: mdl-24435212

ABSTRACT

Phosphoenolpyruvate carboxykinase (PEPCK)-the major decarboxylase in PEPCK-type C4 plants-is also present in appreciable amounts in the bundle sheath cells of NADP-malic enzyme-type C4 plants, such as maize (Zea mays), where it plays an apparent crucial role during photosynthesis (Wingler et al., in Plant Physiol 120(2):539-546, 1999; Furumoto et al., in Plant Mol Biol 41(3):301-311, 1999). Herein, we describe the use of mass spectrometry to demonstrate phosphorylation of maize PEPCK residues Ser55, Thr58, Thr59, and Thr120. Western blotting indicated that the extent of Ser55 phosphorylation dramatically increases in the leaves of maize seedlings when the seedlings are transferred from darkness to light, and decreases in the leaves of seedlings transferred from light to darkness. The effect of light on phosphorylation of this residue is opposite that of the effect of light on PEPCK activity, with the decarboxylase activity of PEPCK being less in illuminated leaves than in leaves left in the dark. This inverse relationship between PEPCK activity and the extent of phosphorylation suggests that the suppressive effect of light on PEPCK decarboxylation activity might be mediated by reversible phosphorylation of Ser55.


Subject(s)
Light , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Zea mays/enzymology , Amino Acid Sequence , Electrophoresis, Polyacrylamide Gel , Mass Spectrometry , Molecular Sequence Data , Phosphoenolpyruvate Carboxykinase (ATP)/chemistry , Phosphorylation , Plant Leaves/enzymology , Sequence Homology, Amino Acid
14.
Ying Yong Sheng Tai Xue Bao ; 23(9): 2483-8, 2012 Sep.
Article in Chinese | MEDLINE | ID: mdl-23286005

ABSTRACT

By using the facility for increasing free air temperature, a field experiment was conducted in a cold area of Northeast China to study the responses of the growth and yield of rain-fed spring corn to the field warming at nighttime during pre-anthesis stage. Under the field warming at nighttime, the nighttime temperature in 0-10 cm soil layer increased by 1.7 degrees C, and the soil moisture content had a slight decrease. Nighttime warming advanced the spring corn phenophases obviously, shorted the pre-anthesis phase by 1 day, and prolonged the post-anthesis phase by 1 day. Nighttime warming also promoted the corn seedlings growth and the root length. Comparing with those in un-warming treatment, green leaf area and three-ear-leave area in nighttime warming treatment increased by 13.5% and 14.6%, and the aboveground biomass, grain yield, and 100-grain mass increased significantly by 8.2%, 9.3%, and 7.1%, respectively. It was suggested that the climate warming (especially the nighttime warming) in Northeast China could improve spring corn growth, and directly affect the corn yield.


Subject(s)
Biomass , Ecosystem , Global Warming , Zea mays/growth & development , China , Computer Simulation , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL