Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 44(18): 4503-4506, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31517917

ABSTRACT

A chromatic dispersion (CD) immune microwave photonic phase shifter (MPPS) based on double-sideband (DSB) modulation is proposed and demonstrated. An optical spectrum processor introduces the phase shift to the MPPS. The DSB signals along two orthogonal polarizations are demodulated to two RF signals with both quadrature amplitude and phase items, transferring the CD-induced power fading to the phase item of the synthetic RF signals. Experimental results show that the RF signals over 14-25 GHz obtain random phase shift in 360° range without a power fading point (PFP) after passing through a dispersion compensation fiber with CD of -331 ps/nm. The phase variation and power variation of the phase-shifted signal are <±5.7° and <±0.9 dB, respectively, at the original PFP at 16 GHz.

2.
Opt Express ; 27(15): 20774-20784, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31510166

ABSTRACT

A photonic microwave phase-coded pulse generator is proposed and experimentally demonstrated based on the principle of vector sum. The key component of the proposed pulse generator is an integrated polarization-division multiplexing Mach-Zehnder modulator (PDM-MZM) and a 90° hybrid coupler. By properly setting the data sequences applied to the specially biased PDM-MZM, binary and quaternary phase-coded microwave pulses (PCMPs) that are free from the background signals can be generated. Since no filters and polarization adjustment are involved, the proposed pulse generator is characterized by a simple structure, low-loss, flexible frequency tunability and high long-term stability. The experimental results show that background-free 4 Gb/s Barker and Frank PCMPs at 18 GHz and 2 Gb/s Barker and Frank PCMPs at 24 GHz are successfully generated. The calculated pulse compression ratio and peak-to-side lobe ratio are in good agreement with the theoretical values.

3.
Opt Express ; 27(14): 20064-20072, 2019 Jul 08.
Article in English | MEDLINE | ID: mdl-31503756

ABSTRACT

In this paper, we propose an all-optical system for the generation of binary phase-coded microwave pulses without baseband components. The scheme is based on a dual-parallel Mach-Zehnder modulator (DPMZM). By properly applying the coding signals and the microwave signals to the precisely biased DPMZM, accurate π phase shift binary phase-coded microwave pulses without baseband components can be generated. The proposed system has an extremely simple and stable all-optical structure, leading to a large frequency tuning range and a high signal quality. The operation of the system is very easy. The generation of the 2-Gbit/s 14-GHz and 4-Gbit/s 16-GHz binary phase-coded microwave pulses under different coding signal amplitudes and microwave carrier powers are experimental verified. The results show that the proposed binary phase-coded microwave pulses generation system has high quality and performance.

4.
Opt Lett ; 44(12): 3138-3141, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-31199400

ABSTRACT

A photonic microwave frequency shift keying (FSK) signal generator is proposed and experimentally demonstrated based on an equivalent photonic switch (EPS). The EPS is constructed using a polarization-multiplexing dual-drive Mach-Zehnder modulator (PM-DMZM). By properly controlling the data sequences and RF signals applied to the PM-DMZM, microwave FSK signals with flexible frequency intervals can be obtained. The proposed FSK signal generator features the advantages of a simple structure, low loss, good stability, and great frequency tunability. In addition, the proposed setup can also be easily reconfigured to generate microwave amplitude shift keying and phase shift keying signals. The experimental results show that 2 Gb/s at 5/14 GHz and 1 Gb/s at 6/20 GHz microwave FSK signals are successfully generated, after transmission over 5 km single-mode fiber. The required received optical power at 7% forward error correction threshold is only -14.48 dBm.

5.
Opt Lett ; 44(8): 2121-2124, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30985826

ABSTRACT

Distributed coherent aperture radar (DCAR) is an important direction for next-generation radar due to its high sensitivity. The challenge to realize DCAR is the synchronization among geographically distributed radar units. We propose an optical network for DCAR synchronization. The proposed network achieves functions of phase-coded pulse generation, time synchronization, and phase synchronization with the help of microwave photonics techniques. Proof-of-concept experiments are conducted in fiber and space transmission scenarios. The combined radar beams have negligible energy loss when synchronization is achieved.

6.
Opt Lett ; 44(1): 155-158, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30645573

ABSTRACT

A Hilbert-transform-based broadband chromatic dispersion (CD) compensation scheme for radio-over-fiber links is proposed and experimentally demonstrated. By constructing a Hilbert transform path, CD-induced phase shifts, which initially lead to periodic power fading of the output RF signals, are transferred to the phases of the RF signals. As a result, the powers of the output RF signals are free from the effect of CD in a broadband frequency range. Experimental results show that a flat normalized amplitude-frequency response is actualized within 2-24 GHz, with only 3.02 dB/4.27 dB power fluctuation after transmission over an equivalent of a 38.6 km/43.6 km single-mode fiber. Besides, compared with a conventional dispersive path, the proposed CD compensation scheme significantly improves the third-order spurious-free dynamic range by 23.60 dB.

SELECTION OF CITATIONS
SEARCH DETAIL
...