Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Signal Transduct Target Ther ; 9(1): 109, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38714712

ABSTRACT

The knee joint has long been considered a closed system. The pathological effects of joint diseases on distant organs have not been investigated. Herein, our clinical data showed that post-traumatic joint damage, combined with joint bleeding (hemarthrosis), exhibits a worse liver function compared with healthy control. With mouse model, hemarthrosis induces both cartilage degeneration and remote liver damage. Next, we found that hemarthrosis induces the upregulation in ratio and differentiation towards Th17 cells of CD4+ T cells in peripheral blood and spleen. Deletion of CD4+ T cells reverses hemarthrosis-induced liver damage. Degeneration of cartilage matrix induced by hemarthrosis upregulates serological type II collagen (COL II), which activates CD4+ T cells. Systemic application of a COL II antibody blocks the activation. Furthermore, bulk RNAseq and single-cell qPCR analysis revealed that the cartilage Akt pathway is inhibited by blood treatment. Intra-articular application of Akt activator blocks the cartilage degeneration and thus protects against the liver impairment in mouse and pig models. Taken together, our study revealed a pathological joint-liver axis mediated by matrikine-activated CD4+ T cells, which refreshes the organ-crosstalk axis and provides a new treatment target for hemarthrosis-related disease. Intra-articular bleeding induces cartilage degradation through down-reulation of cartilage Akt pathway. During this process, the soluble COL II released from the damaged cartilage can activate peripheral CD4+ T cells, differention into Th17 cells and secretion of IL-17, which consequently induces liver impairment. Intra-articular application of sc79 (inhibitor of Akt pathway) can prevent the cartilage damage as well as its peripheral influences.


Subject(s)
CD4-Positive T-Lymphocytes , Liver , Animals , Mice , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Liver/pathology , Liver/metabolism , Hemarthrosis/genetics , Hemarthrosis/pathology , Male , Disease Models, Animal , Th17 Cells/immunology , Th17 Cells/pathology , Collagen Type II/genetics , Elapid Venoms/pharmacology , Female , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism
2.
Sleep Med Rev ; 75: 101926, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38564856

ABSTRACT

The number of individuals experiencing sleep loss has exponentially risen over the past decades. Extrapolation of laboratory findings to the real world suggests that females are more affected by extended wakefulness and circadian misalignment than males are. Therefore, long-term effects such as sleep and metabolic disorders are likely to be more prevalent in females than in males. Despite emerging evidence for sex differences in key aspects of sleep-wake and circadian regulation, much remains unknown, as females are often underrepresented in sleep and circadian research. This narrative review aims at highlighting 1) how sex differences systematically impinge on the sleep-wake and circadian regulation in humans, 2) how sex differences in sleep and circadian factors modulate metabolic control, and 3) the relevance of these differences for precision medicine. Ultimately, the findings justify factoring in sex differences when optimizing individually targeted sleep and circadian interventions in humans.

3.
Obesity (Silver Spring) ; 31(9): 2235-2239, 2023 09.
Article in English | MEDLINE | ID: mdl-37537954

ABSTRACT

OBJECTIVE: Shift workers typically experience misalignment between their circadian system and behavioral/environmental cycles and have an increased risk for obesity. Experimental studies in non-shift workers have suggested that circadian misalignment can disrupt energy balance regulation. This study examined the impact of circadian misalignment in the most relevant population, i.e., chronic shift workers. METHODS: Seven healthy chronic night shift workers underwent a randomized crossover study with two 3-day laboratory protocols: a night work protocol including 12-hour inverted behavioral/environmental cycles (circadian misalignment) and a day work protocol (circadian alignment). RESULTS: Circadian misalignment led to a ~17% increase in 24-hour acylated ghrelin levels in the chronic shift workers (p = 0.009). Consistently, circadian misalignment resulted in ~14% higher hunger at breakfast in the night shift (p = 0.04). Circadian misalignment did not significantly change fasting and postprandial energy expenditure or respiratory exchange ratio (all p > 0.32). Unexpectedly, 24-hour behavioral activity levels were ~38% higher (p < 0.0001) during circadian misalignment, despite a concurrent increase in sleepiness (p = 0.03). CONCLUSIONS: These results reveal that circadian misalignment, while carefully controlling for dietary intake, increases acylated ghrelin in chronic shift workers. Further studies should test whether the observed acute effects of circadian misalignment in chronic shift workers contribute to their increased obesity risk in the long term.


Subject(s)
Circadian Rhythm , Sleep , Humans , Sleep/physiology , Circadian Rhythm/physiology , Cross-Over Studies , Ghrelin , Obesity , Work Schedule Tolerance/physiology
4.
Diabetes Care ; 46(7): 1417-1424, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37226675

ABSTRACT

OBJECTIVE: We aimed to determine the association of the time-of-day of bout-related moderate-to-vigorous physical activity (bMVPA) with changes in glycemic control across 4 years in adults with overweight/obesity and type 2 diabetes. RESEARCH DESIGN AND METHODS: Among 2,416 participants (57% women; mean age, 59 years) with 7-day waist-worn accelerometry recording at year 1 or 4, we assigned bMVPA timing groups based on the participants' temporal distribution of bMVPA at year 1 and recategorized them at year 4. The time-varying exposure of bMVPA (≥10-min bout) timing was defined as ≥50% of bMVPA occurring during the same time period (morning, midday, afternoon, or evening), <50% of bMVPA in any time period (mixed), and ≤1 day with bMVPA per week (inactive). RESULTS: HbA1c reduction at year 1 varied among bMVPA timing groups (P = 0.02), independent of weekly bMVPA volume and intensity. The afternoon group had the greatest HbA1c reduction versus inactive (-0.22% [95%CI -0.39%, -0.06%]), the magnitude of which was 30-50% larger than the other groups. The odds of discontinuation versus maintaining or initiating glucose-lowering medications at year 1 differed by bMVPA timing (P = 0.04). The afternoon group had the highest odds (odds ratio 2.13 [95% CI 1.29, 3.52]). For all the year-4 bMVPA timing groups, there were no significant changes in HbA1c between year 1 and 4. CONCLUSIONS: bMVPA performed in the afternoon is associated with improvements in glycemic control in adults with diabetes, especially within the initial 12 months of an intervention. Experimental studies are needed to examine causality.


Subject(s)
Diabetes Mellitus, Type 2 , Adult , Female , Humans , Male , Middle Aged , Diabetes Mellitus, Type 2/drug therapy , Exercise , Glycated Hemoglobin , Glycemic Control , Obesity
5.
Sports Med Open ; 9(1): 34, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37208462

ABSTRACT

BACKGROUND: Current recommendations for physical exercise include information about the frequency, intensity, type, and duration of exercise. However, to date, there are no recommendations on what time of day one should exercise. The aim was to perform a systematic review with meta-analysis to investigate if the time of day of exercise training in intervention studies influences the degree of improvements in physical performance or health-related outcomes. METHODS: The databases EMBASE, PubMed, Cochrane Library, and SPORTDiscus were searched from inception to January 2023. Eligibility criteria were that the studies conducted structured endurance and/or strength training with a minimum of two exercise sessions per week for at least 2 weeks and compared exercise training between at least two different times of the day using a randomized crossover or parallel group design. RESULTS: From 14,125 screened articles, 26 articles were included in the systematic review of which seven were also included in the meta-analyses. Both the qualitative synthesis and the quantitative synthesis (i.e., meta-analysis) provide little evidence for or against the hypothesis that training at a specific time of day leads to more improvements in performance-related or health-related outcomes compared to other times. There was some evidence that there is a benefit when training and testing occur at the same time of day, mainly for performance-related outcomes. Overall, the risk of bias in most studies was high. CONCLUSIONS: The current state of research provides evidence neither for nor against a specific time of the day being more beneficial, but provides evidence for larger effects when there is congruency between training and testing times. This review provides recommendations to improve the design and execution of future studies on this topic. REGISTRATION: PROSPERO (CRD42021246468).

7.
Discov Oncol ; 14(1): 46, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37093368

ABSTRACT

BACKGROUND: Chemotherapy is the main treatment strategy for patients with advanced HER2-negative gastric cancer (GC); yet, many patients do not respond well to treatment. This study evaluated the sensitivity of a mini patient-derived xenograft (MiniPDX) animal model in patients with HER2-negative intermediate-advanced GC. METHODS: In this single-arm, open-label clinical study, we consecutively recruited patients with HER2-negative advanced or recurrent GC from September 2018 to July 2021. Tumor tissues were subjected to MiniPDX drug sensitivity tests for screening individualized anti-tumor drugs; appropriate drug types or combinations were selected based on drug screening results. The primary endpoints were progression-free survival (PFS) and safety, and the secondary endpoints were overall survival (OS) and objective response rate (ORR). RESULTS: A total of 17 patients were screened, and 14 eligible patients were included.The median follow-up time was 9 (2-34) months. The median PFS time was 14.1 (2-34) months, the median OS time was 16.9 (2-34) months, ORR was 42.9% (6/14), and DCR was 92.9% (13/14). The most common treatment-related adverse events (TRAE) were fatigue (14 (100%)), anorexia (13 (93%)) and insomnia (12 (86%)), and the most common grade 3 or worse TRAE was fatigue (6 (43%)), and anorexia (6 (43%)). The occurrence rate of myelosuppression, nausea and vomiting, abnormal liver enzymes, and other grade 3-4 chemotherapy adverse reactions were relatively low, and no grade 5 treatment-related adverse events occurred. CONCLUSION: Screening HER2-negative medium-advanced GC/GJC chemotherapy regimens and targeted drugs based on MiniPDX animal models showed good tumor activity and safety.

8.
Nat Rev Genet ; 24(1): 4-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36028773

ABSTRACT

Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.


Subject(s)
Circadian Rhythm , Sleep , Humans , Circadian Rhythm/genetics , Sleep/genetics , Phenotype
9.
Cell Metab ; 34(10): 1486-1498.e7, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36198293

ABSTRACT

Late eating has been linked to obesity risk. It is unclear whether this is caused by changes in hunger and appetite, energy expenditure, or both, and whether molecular pathways in adipose tissues are involved. Therefore, we conducted a randomized, controlled, crossover trial (ClinicalTrials.gov NCT02298790) to determine the effects of late versus early eating while rigorously controlling for nutrient intake, physical activity, sleep, and light exposure. Late eating increased hunger (p < 0.0001) and altered appetite-regulating hormones, increasing waketime and 24-h ghrelin:leptin ratio (p < 0.0001 and p = 0.006, respectively). Furthermore, late eating decreased waketime energy expenditure (p = 0.002) and 24-h core body temperature (p = 0.019). Adipose tissue gene expression analyses showed that late eating altered pathways involved in lipid metabolism, e.g., p38 MAPK signaling, TGF-ß signaling, modulation of receptor tyrosine kinases, and autophagy, in a direction consistent with decreased lipolysis/increased adipogenesis. These findings show converging mechanisms by which late eating may result in positive energy balance and increased obesity risk.


Subject(s)
Hunger , Overweight , Adult , Appetite , Eating/physiology , Energy Intake , Energy Metabolism/physiology , Ghrelin/metabolism , Humans , Hunger/physiology , Leptin/metabolism , Metabolic Networks and Pathways , Obesity/metabolism , Transforming Growth Factor beta/metabolism , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Proc Natl Acad Sci U S A ; 119(38): e2206348119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095195

ABSTRACT

Shift workers have a 25 to 40% higher risk of depression and anxiety partly due to a misalignment between the central circadian clock and daily environmental/behavioral cycles that may negatively affect mood and emotional well-being. Hence, evidence-based circadian interventions are required to prevent mood vulnerability in shift work settings. We used a stringently controlled 14-d circadian paradigm to assess mood vulnerability during simulated night work with either daytime and nighttime or daytime-only eating as compared with simulated day work (baseline). Simulated night work with daytime and nighttime eating increased depression-like mood levels by 26.2% (p-value adjusted using False Discovery Rates, pFDR = 0.001; effect-size r = 0.78) and anxiety-like mood levels by 16.1% (pFDR = 0.001; effect-size r = 0.47) compared to baseline, whereas this did not occur with simulated night work in the daytime-only eating group. Importantly, a larger degree of internal circadian misalignment was robustly associated with more depression-like (r = 0.77; P = 0.001) and anxiety-like (r = 0.67; P = 0.002) mood levels during simulated night work. These findings offer a proof-of-concept demonstration of an evidence-based meal timing intervention that may prevent mood vulnerability in shift work settings. Future studies are required to establish if changes in meal timing can prevent mood vulnerability in night workers.


Subject(s)
Anxiety , Circadian Clocks , Depressive Disorder , Meals , Shift Work Schedule , Work Schedule Tolerance , Adult , Anxiety/prevention & control , Circadian Rhythm , Depressive Disorder/prevention & control , Female , Humans , Male , Meals/psychology , Shift Work Schedule/psychology , Work Schedule Tolerance/psychology , Young Adult
11.
J Pineal Res ; 72(3): e12791, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35133678

ABSTRACT

The daily rhythm of plasma melatonin concentrations is typically unimodal, with one broad peak during the circadian night and near-undetectable levels during the circadian day. Light at night acutely suppresses melatonin secretion and phase shifts its endogenous circadian rhythm. In contrast, exposure to darkness during the circadian day has not generally been reported to increase circulating melatonin concentrations acutely. Here, in a highly-controlled simulated night shift protocol with 12-h inverted behavioral/environmental cycles, we unexpectedly found that circulating melatonin levels were significantly increased during daytime sleep (p < .0001). This resulted in a secondary melatonin peak during the circadian day in addition to the primary peak during the circadian night, when sleep occurred during the circadian day following an overnight shift. This distinctive diurnal melatonin rhythm with antiphasic peaks could not be readily anticipated from the behavioral/environmental factors in the protocol (e.g., light exposure, posture, diet, activity) or from current mathematical model simulations of circadian pacemaker output. The observation, therefore, challenges our current understanding of underlying physiological mechanisms that regulate melatonin secretion. Interestingly, the increase in melatonin concentration observed during daytime sleep was positively correlated with the change in timing of melatonin nighttime peak (p = .002), but not with the degree of light-induced melatonin suppression during nighttime wakefulness (p = .92). Both the increase in daytime melatonin concentrations and the change in the timing of the nighttime peak became larger after repeated exposure to simulated night shifts (p = .002 and p = .006, respectively). Furthermore, we found that melatonin secretion during daytime sleep was positively associated with an increase in 24-h glucose and insulin levels during the night shift protocol (p = .014 and p = .027, respectively). Future studies are needed to elucidate the key factor(s) driving the unexpected daytime melatonin secretion and the melatonin rhythm with antiphasic peaks during shifted sleep/wake schedules, the underlying mechanisms of their relationship with glucose metabolism, and the relevance for diabetes risk among shift workers.


Subject(s)
Melatonin , Sleep Disorders, Circadian Rhythm , Circadian Rhythm/physiology , Humans , Melatonin/metabolism , Sleep/physiology , Work Schedule Tolerance/physiology
12.
Med Sci Sports Exerc ; 54(1): 169-180, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34431827

ABSTRACT

INTRODUCTION: Diurnal variations in physical performance can affect athletes' success in competitive sports depending on whether the time of peak performance concurs with the time of competition. The purpose of this systematic review was to investigate the diurnal variation in maximum endurance and strength performance. METHODS: The databases PubMed, EMBASE, and Web of Science were searched from inception to November 2020. The search string was externally reviewed according to PRESS guidelines, and the review was conducted in accordance to PRISMA guidelines and registered beforehand on PROSPERO. Eligibility criteria were that 1) the studies included humans and 2) any kind of maximum endurance or maximum strength test was performed at 3) a minimum of three different times of the day. There were no restrictions regarding study design, participants' sex, age, or fitness levels. RESULTS: From 10,460 screened articles, 63 articles met all three inclusion criteria. Meta-analysis on the harmonizable 29 studies provided evidence for diurnal variations in physical performance. In detail, the overall effect sizes (95% confidence intervals) were 0.23 (0.05-0.40), 0.73 (0.37-1.09), 0.39 (0.18-0.60), and 0.79 (0.28-1.30) for endurance exercise tests, maximum power output in the Wingate test, handgrip strength, and jump height, respectively, all in favor of higher performance in the evening. The overall risk of bias in individual studies was moderately high. CONCLUSIONS: There is strong evidence that anaerobic power and jump height are maximal between 1300 and 2000 h. There is some evidence that handgrip strength peaks between 1400 and 2100 h, but only little evidence that there is a time of peak performance in maximum endurance.


Subject(s)
Athletic Performance/physiology , Muscle Strength/physiology , Physical Endurance/physiology , Circadian Rhythm , Humans , Time Factors
13.
J Gerontol A Biol Sci Med Sci ; 77(1): 55-65, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33822930

ABSTRACT

Chronic increases in pro-inflammatory cytokines in older adults, known as inflammaging, are an important risk factor for morbidity and mortality in the aging population. It has been suggested that circadian disruption may play a role in chronic inflammation, but there has been limited study that investigated the overall profile of 24-hour rest-activity rhythms in relation to inflammation using longitudinal data. In the Outcomes of Sleep Disorders in Older Men Study, we applied the extended cosine model to derive multiple rest-activity rhythm characteristics using multiday actigraphy, and examined their associations with 6 inflammatory markers (ie, C-reactive protein [CRP], interleukin 6 [IL-6], tumor necrosis factor alpha [TNF-α], tumor necrosis factor alpha soluble receptor II [TNF-α-sRII], interleukin-1ß [IL-1ß], interferon gamma [IFN-γ]) measured from fasting blood. We assessed both the cross-sectional association between rest-activity rhythms and inflammatory markers measured at baseline, and the prospective association between baseline rest-activity rhythms and changes in inflammatory markers over 3.5 years of follow-up. We found that multiple rest-activity characteristics, including lower amplitude and relative amplitude, and decreased overall rhythmicity, were associated with higher levels of CRP, IL-6, TNF-α, and TNF-α-sRII, but not IL-1ß and IFN-γ at baseline. Moreover, the lowest quartile of these 3 rest-activity characteristics was associated with an approximately 2-fold increase in the odds of having elevated inflammation (ie, having 3 or more markers in the highest quartile) at baseline. However, we found little evidence supporting a relationship between rest-activity rhythm characteristics and changes in inflammatory markers. Future studies should clarify the dynamic relationship between rest-activity rhythms and inflammation in different populations, and evaluate the effects of improving rest-activity profiles on inflammation and related disease outcomes.


Subject(s)
Actigraphy , Interleukin-6 , Aged , Biomarkers , C-Reactive Protein , Cross-Sectional Studies , Humans , Inflammation , Male
14.
FASEB J ; 36(1): e22043, 2022 01.
Article in English | MEDLINE | ID: mdl-34861073

ABSTRACT

Circadian misalignment-the misalignment between the central circadian "clock" and behavioral and environmental cycles (including sleep/wake, fasting/eating, dark/light)-results in adverse cardiovascular and metabolic effects. Potential underlying mechanisms for these adverse effects include alterations in the orogastrointestinal microbiota. However, it remains unknown whether human oral microbiota has endogenous circadian rhythms (i.e., independent of sleep/wake, fasting/eating, and dark/light cycles) and whether circadian misalignment influences oral microbiota community composition. Healthy young individuals [27.3 ± 2.3 years (18-35 years), 4 men and 2 women, body-mass index range: 18-28 kg/m2 ] were enrolled in a stringently controlled 14-day circadian laboratory protocol. This included a 32-h constant routine (CR) protocol (endogenous circadian baseline assessment), a forced desynchrony protocol with four 28-h "days" under ~3 lx to induce circadian misalignment, and a post-misalignment 40-h CR protocol. Microbiota assessments were performed on saliva samples collected every 4 h throughout both CR protocols. Total DNA was extracted and processed using high-throughput 16S ribosomal RNA gene amplicon sequencing. The relative abundance of specific oral microbiota populations, i.e., one of the five dominant phyla, and three of the fourteen dominant genera, exhibited significant endogenous circadian rhythms. Importantly, circadian misalignment dramatically altered the oral microbiota landscape, such that four of the five dominant phyla and eight of the fourteen dominant genera exhibited significant circadian misalignment effects. Moreover, circadian misalignment significantly affected the metagenome functional content of oral microbiota (inferred gene content analysis), as indicated by changes in specific functional pathways associated with metabolic control and immunity. Collectively, our proof-of-concept study provides evidence for endogenous circadian rhythms in human oral microbiota and show that even relatively short-term experimental circadian misalignment can dramatically affect microbiota community composition and functional pathways involved in metabolism and immune function. These proof-of-principle findings have translational relevance to individuals typically exposed to circadian misalignment, including night shift workers and frequent flyers.


Subject(s)
Circadian Rhythm , Microbiota , Mouth/microbiology , Saliva/microbiology , Shift Work Schedule , Adolescent , Adult , Female , Humans , Male , Proof of Concept Study
15.
Sci Adv ; 7(49): eabg9910, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34860550

ABSTRACT

Night work increases diabetes risk. Misalignment between the central circadian "clock" and daily behaviors, typical in night workers, impairs glucose tolerance, likely due to internal misalignment between central and peripheral circadian rhythms. Whether appropriate circadian alignment of eating can prevent internal circadian misalignment and glucose intolerance is unknown. In a 14-day circadian paradigm, we assessed glycemic control during simulated night work with either nighttime or daytime eating. Assessment of central (body temperature) and peripheral (glucose and insulin) endogenous circadian rhythms happened during constant routine protocols before and after simulated night work. Nighttime eating led to misalignment between central and peripheral (glucose) endogenous circadian rhythms and impaired glucose tolerance, whereas restricting meals to daytime prevented it. These findings offer a behavioral approach to preventing glucose intolerance in shift workers.

16.
Diabetes ; 70(11): 2639-2651, 2021 11.
Article in English | MEDLINE | ID: mdl-34376476

ABSTRACT

Foot process effacement is an important feature of early diabetic nephropathy (DN), which is closely related to the development of albuminuria. Under certain nephrotic conditions, the integrity and function of the glomerular slit diaphragm (SD) structure were impaired and replaced by the tight junction (TJ) structure, resulting in so-called SD-TJ transition, which could partially explain the effacement of foot processes at the molecular level. However, the mechanism underlying the SD-TJ transition has not been described in DN. Here, we demonstrated that impaired autophagic flux blocked p62-mediated degradation of ZO-1 (TJ protein) and promoted podocytes injury via activation of caspase3 and caspase8. Interestingly, the expression of VDR in podocytes was decreased under diabetes conditions, which impaired autophagic flux through downregulating Atg3. Of note, we also found that VDR abundance was negatively associated with impaired autophagic flux and SD-TJ transition in the glomeruli from human renal biopsy samples with DN. Furthermore, VDR activation improved autophagic flux and attenuated SD-TJ transition in the glomeruli of diabetic animal models. In conclusion, our data provided the novel insight that VDR/Atg3 axis deficiency resulted in SD-TJ transition and foot processes effacement via blocking the p62-mediated autophagy pathway in DN.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/physiology , Diabetic Nephropathies/metabolism , RNA-Binding Proteins/metabolism , Receptors, Calcitriol/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Autophagy-Related Proteins/genetics , Bone Density Conservation Agents/pharmacology , Caspase 3/genetics , Caspase 3/metabolism , Caspase 8/genetics , Caspase 8/metabolism , Cells, Cultured , Diabetic Nephropathies/pathology , Down-Regulation , Ergocalciferols/pharmacology , Gene Expression Regulation/drug effects , Humans , Kidney/cytology , Kidney Glomerulus/metabolism , Mice , Mice, Inbred NOD , Podocytes/metabolism , RNA-Binding Proteins/genetics , Random Allocation , Rats , Rats, Sprague-Dawley , Receptors, Calcitriol/agonists , Receptors, Calcitriol/deficiency , Receptors, Calcitriol/genetics , Tight Junctions , Ubiquitin-Conjugating Enzymes/genetics , Zonula Occludens-1 Protein/genetics , Zonula Occludens-1 Protein/metabolism
17.
J Am Soc Nephrol ; 32(10): 2467-2483, 2021 10.
Article in English | MEDLINE | ID: mdl-34127536

ABSTRACT

BACKGROUND: AKI is a significant public health problem with high morbidity and mortality. Unfortunately, no definitive treatment is available for AKI. RNA interference (RNAi) provides a new and potent method for gene therapy to tackle this issue. METHODS: We engineered red blood cell-derived extracellular vesicles (REVs) with targeting peptides and therapeutic siRNAs to treat experimental AKI in a mouse model after renal ischemia/reperfusion (I/R) injury and unilateral ureteral obstruction (UUO). Phage display identified peptides that bind to the kidney injury molecule-1 (Kim-1). RNA-sequencing (RNA-seq) characterized the transcriptome of ischemic kidney to explore potential therapeutic targets. RESULTS: REVs targeted with Kim-1-binding LTH peptide (REVLTH) efficiently homed to and accumulated at the injured tubules in kidney after I/R injury. We identified transcription factors P65 and Snai1 that drive inflammation and fibrosis as potential therapeutic targets. Taking advantage of the established REVLTH, siRNAs targeting P65 and Snai1 were efficiently delivered to ischemic kidney and consequently blocked the expression of P-p65 and Snai1 in tubules. Moreover, dual suppression of P65 and Snai1 significantly improved I/R- and UUO-induced kidney injury by alleviating tubulointerstitial inflammation and fibrosis, and potently abrogated the transition to CKD. CONCLUSIONS: A red blood cell-derived extracellular vesicle platform targeted Kim-1 in acutely injured mouse kidney and delivered siRNAs for transcription factors P65 and Snai1, alleviating inflammation and fibrosis in the tubules.


Subject(s)
Acute Kidney Injury/therapy , Extracellular Vesicles , Genetic Therapy/methods , Hepatitis A Virus Cellular Receptor 1/genetics , Snail Family Transcription Factors/genetics , Transcription Factor RelA/genetics , Acute Kidney Injury/pathology , Animals , Disease Models, Animal , Erythrocytes , Fibrosis , Inflammation/therapy , Kidney Tubules/metabolism , Kidney Tubules/pathology , Male , Mice , Peptides , RNA Interference , RNA, Small Interfering/therapeutic use , Reperfusion Injury/complications , Snail Family Transcription Factors/metabolism , Transcription Factor RelA/metabolism , Ureteral Obstruction/complications
18.
Technol Cancer Res Treat ; 20: 1533033820960755, 2021.
Article in English | MEDLINE | ID: mdl-33896245

ABSTRACT

OBJECTIVE: The incidence of skin squamous cell carcinoma (SSCC) has recently been increasing, with diverse clinical manifestations.SSCC could metastasize to lymph nodes or other organs, posing a great threat to life. The present study was designed to investigate the function and underlying mechanism of muscleblind-like protein 1 (MBNL1) in skin squamous cell carcinoma. METHODS: SCL-1 cell was used for vitro model and transfected with MBNL1 or siMBNL1 plasmids. MTT Assays, LDH activity ELISA, and Transwell chamber migration experiment were used to confirm the effects of MBNL1 on cell growth of SCL-1 cell. Western blot analysis was used to analyze the mechanism of MBNL1 in SCL-1 cell. RESULTS: Down-regulation of MBNL1 promoted cell metastasis of SSCC, while up-regulation of MBNL1 reduced cell metastasis of SSCC in vitro. Down-regulation of MBNL1 suppressed the protein expression of T cell intracellular antigen (TIAL1), myogenic determinant 1 (MyoD1) and Caspase-3 in vitro. Consistent with these observations, inhibition of TIAL1 or MYOD1 expression attenuated the effects of MBNL1 in SSCC. CONCLUSION: The present study revealed that MBNL1 suppressed thecancer metastatic capacity of SSCC via by TIAL1/MYOD1/Caspase-3 signaling pathways.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , RNA-Binding Proteins/genetics , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Carcinoma, Squamous Cell/secondary , Caspase 3/metabolism , Caspase 9/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation , Gene Silencing , Humans , Hydro-Lyases/metabolism , MyoD Protein/genetics , MyoD Protein/metabolism , Neoplasm Metastasis/genetics , RNA-Binding Proteins/antagonists & inhibitors , RNA-Binding Proteins/metabolism , Signal Transduction/genetics , Skin Neoplasms/pathology
19.
Front Physiol ; 12: 586589, 2021.
Article in English | MEDLINE | ID: mdl-33679428

ABSTRACT

Since the outbreak of Coronavirus Disease 2019 (COVID-19) in Wuhan, China, in December of 2019, it has rapidly become a global pandemic. Although acute respiratory disorder is the main manifestation of COVID-19, acute kidney injury (AKI) is another important extrapulmonary complication, which has a critical impact on the prognosis and mortality of patients. Current understanding about the exact pathogenesis of AKI in COVID-19 is unclear. Several studies have suggested that intrarenal, pre-renal and post-renal factors mediated collaboratively by direct virus attack, overloaded immune responses, drugs, sepsis, coagulation dysfunction, and underlying diseases may all be involved in the pathogenesis of AKI. This article reviews the current understanding of the pathogenesis of AKI in COVID-19.

20.
Diabetes Care ; 44(4): 1046-1054, 2021 04.
Article in English | MEDLINE | ID: mdl-33597215

ABSTRACT

OBJECTIVE: Moderate- to vigorous-intensity physical activity (MVPA) improves cardiovascular health. Few studies have examined MVPA timing. We examined the associations of timing of bout-related MVPA with cardiorespiratory fitness and cardiovascular risk in adults with type 2 diabetes. RESEARCH DESIGN AND METHODS: Baseline 7-day hip-worn accelerometry data from Look AHEAD participants (n = 2,153, 57% women) were analyzed to identify bout-related MVPA (≥3 METs/min for ≥10 min). Cardiorespiratory fitness was assessed by maximal graded exercise test. Participants were categorized into six groups on the basis of the time of day with the majority of bout-related MVPA (METs × min): ≥50% of bout-related MVPA during the same time window (morning, midday, afternoon, or evening), <50% of bout-related MVPA in any time category (mixed; the reference group), and ≤1 day with bout-related MVPA per week (inactive). RESULTS: Cardiorespiratory fitness was highly associated with timing of bout-related MVPA (P = 0.0005), independent of weekly bout-related MVPA volume and intensity. Importantly, this association varied by sex (P = 0.02). In men, the midday group had the lowest fitness (ß = -0.46 [95% CI -0.87, -0.06]), while the mixed group in women was the least fit. Framingham risk score (FRS) was associated with timing of bout-related MVPA (P = 0.02), which also differed by sex (P = 0.0007). The male morning group had the highest 4-year FRS (2.18% [0.70, 3.65]), but no association was observed in women. CONCLUSIONS: Timing of bout-related MVPA is associated with cardiorespiratory fitness and cardiovascular risk in men with type 2 diabetes, independent of bout-related MVPA volume and intensity. Prospective studies are needed to determine the impacts of MVPA timing on cardiovascular health.


Subject(s)
Diabetes Mellitus, Type 2 , Accelerometry , Adult , Exercise , Female , Humans , Male , Sedentary Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...