Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Affect Disord ; 355: 40-49, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38552911

ABSTRACT

BACKGROUND: Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS: The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS: From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS: Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION: This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.


Subject(s)
Deep Learning , Speech , Humans , Smartphone , Depression/diagnosis , Speech Recognition Software
2.
J Am Med Inform Assoc ; 31(4): 1009-1024, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38366879

ABSTRACT

OBJECTIVES: Question answering (QA) systems have the potential to improve the quality of clinical care by providing health professionals with the latest and most relevant evidence. However, QA systems have not been widely adopted. This systematic review aims to characterize current medical QA systems, assess their suitability for healthcare, and identify areas of improvement. MATERIALS AND METHODS: We searched PubMed, IEEE Xplore, ACM Digital Library, ACL Anthology, and forward and backward citations on February 7, 2023. We included peer-reviewed journal and conference papers describing the design and evaluation of biomedical QA systems. Two reviewers screened titles, abstracts, and full-text articles. We conducted a narrative synthesis and risk of bias assessment for each study. We assessed the utility of biomedical QA systems. RESULTS: We included 79 studies and identified themes, including question realism, answer reliability, answer utility, clinical specialism, systems, usability, and evaluation methods. Clinicians' questions used to train and evaluate QA systems were restricted to certain sources, types and complexity levels. No system communicated confidence levels in the answers or sources. Many studies suffered from high risks of bias and applicability concerns. Only 8 studies completely satisfied any criterion for clinical utility, and only 7 reported user evaluations. Most systems were built with limited input from clinicians. DISCUSSION: While machine learning methods have led to increased accuracy, most studies imperfectly reflected real-world healthcare information needs. Key research priorities include developing more realistic healthcare QA datasets and considering the reliability of answer sources, rather than merely focusing on accuracy.


Subject(s)
Health Personnel , Point-of-Care Systems , Humans , Reproducibility of Results , PubMed , Machine Learning
3.
JMIR Mhealth Uhealth ; 10(10): e40667, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36194451

ABSTRACT

BACKGROUND: Gait is an essential manifestation of depression. However, the gait characteristics of daily walking and their relationships with depression have yet to be fully explored. OBJECTIVE: The aim of this study was to explore associations between depression symptom severity and daily-life gait characteristics derived from acceleration signals in real-world settings. METHODS: We used two ambulatory data sets (N=71 and N=215) with acceleration signals collected by wearable devices and mobile phones, respectively. We extracted 12 daily-life gait features to describe the distribution and variance of gait cadence and force over a long-term period. Spearman coefficients and linear mixed-effects models were used to explore the associations between daily-life gait features and depression symptom severity measured by the 15-item Geriatric Depression Scale (GDS-15) and 8-item Patient Health Questionnaire (PHQ-8) self-reported questionnaires. The likelihood-ratio (LR) test was used to test whether daily-life gait features could provide additional information relative to the laboratory gait features. RESULTS: Higher depression symptom severity was significantly associated with lower gait cadence of high-performance walking (segments with faster walking speed) over a long-term period in both data sets. The linear regression model with long-term daily-life gait features (R2=0.30) fitted depression scores significantly better (LR test P=.001) than the model with only laboratory gait features (R2=0.06). CONCLUSIONS: This study indicated that the significant links between daily-life walking characteristics and depression symptom severity could be captured by both wearable devices and mobile phones. The daily-life gait patterns could provide additional information for predicting depression symptom severity relative to laboratory walking. These findings may contribute to developing clinical tools to remotely monitor mental health in real-world settings.


Subject(s)
Depression , Gait , Acceleration , Aged , Humans , Retrospective Studies , Walking
4.
IEEE J Biomed Health Inform ; 26(1): 423-435, 2022 01.
Article in English | MEDLINE | ID: mdl-34129509

ABSTRACT

The ability to perform accurate prognosis is crucial for proactive clinical decision making, informed resource management and personalised care. Existing outcome prediction models suffer from a low recall of infrequent positive outcomes. We present a highly-scalable and robust machine learning framework to automatically predict adversity represented by mortality and ICU admission and readmission from time-series of vital signs and laboratory results obtained within the first 24 hours of hospital admission. The stacked ensemble platform comprises two components: a) an unsupervised LSTM Autoencoder that learns an optimal representation of the time-series, using it to differentiate the less frequent patterns which conclude with an adverse event from the majority patterns that do not, and b) a gradient boosting model, which relies on the constructed representation to refine prediction by incorporating static features. The model is used to assess a patient's risk of adversity and provides visual justifications of its prediction. Results of three case studies show that the model outperforms existing platforms in ICU and general ward settings, achieving average Precision-Recall Areas Under the Curve (PR-AUCs) of 0.891 (95% CI: 0.878-0.939) for mortality and 0.908 (95% CI: 0.870-0.935) in predicting ICU admission and readmission.


Subject(s)
Electronic Health Records , Machine Learning , Hospitalization , Humans , Length of Stay , ROC Curve , Retrospective Studies
5.
Stat Atlases Comput Models Heart ; 13593: 26-35, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37133264

ABSTRACT

2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...