Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Eur J Nucl Med Mol Imaging ; 51(2): 455-467, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37801139

ABSTRACT

PURPOSE: Despite the revealed role of immunological dysfunctions in the development and progression of Alzheimer's disease (AD) through animal and postmortem investigations, direct evidence regarding the impact of genetic factors on microglia response and amyloid-ß (Aß) deposition in AD individuals is lacking. This study aims to elucidate this mechanism by integrating transcriptomics and TSPO, Aß PET imaging in clinical AD cohort. METHODS: We analyzed 85 patients with PET/MR imaging for microglial activation (TSPO, [18F]DPA-714) and Aß ([18F]AV-45) within the prospective Alzheimer's Disease Immunization and Microbiota Initiative Study Cohort (ADIMIC). Immune-related differentially expressed genes (IREDGs), identified based on AlzData, were screened and verified using blood samples from ADIMIC. Correlation and mediation analyses were applied to investigate the relationships between immune-related genes expression, TSPO and Aß PET imaging. RESULTS: TSPO uptake increased significantly both in aMCI (P < 0.05) and AD participants (P < 0.01) and showed a positive correlation with Aß deposition (r = 0.42, P < 0.001). Decreased expression of TGFBR3, FABP3, CXCR4 and CD200 was observed in AD group. CD200 expression was significantly negatively associated with TSPO PET uptake (r =-0.33, P = 0.013). Mediation analysis indicated that CD200 acted as a significant mediator between TSPO uptake and Aß deposition (total effect B = 1.92, P = 0.004) and MMSE score (total effect B =-54.01, P = 0.003). CONCLUSION: By integrating transcriptomics and TSPO PET imaging in the same clinical AD cohort, this study revealed CD200 played an important role in regulating neuroinflammation, Aß deposition and cognitive dysfunction.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Gene Expression Profiling , Neuroinflammatory Diseases , Positron-Emission Tomography/methods , Prospective Studies , Receptors, GABA/genetics , Receptors, GABA/metabolism
2.
Mol Neurobiol ; 60(10): 5548-5556, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37322288

ABSTRACT

Alzheimer's disease (AD) is the most common type of neurodegenerative disease and its pathogenesis is still unclear. Genetic factors are thought to account for a large proportion of the overall AD phenotypes. ATP-binding cassette transporter A7 (ABCA7) is one of the most important risk gene for AD. Multiple forms of ABCA7 variants significantly increase the risk of AD, such as single-nucleotide polymorphisms, premature termination codon variants, missense variants, variable number tandem repeat, mutations, and alternative splicing. AD patients with ABCA7 variants usually exhibit typical clinical and pathological features of traditional AD with a wide age of onset range. ABCA7 variants can alter ABCA7 protein expression levels and protein structure to affect protein functions such as abnormal lipid metabolism, amyloid precursor protein (APP) processing, and immune cell function. Specifically, ABCA7 deficiency can cause neuronal apoptosis by inducing endoplasmic reticulum stress through the PERK/eIF2α pathway. Second, ABCA7 deficiency can increase Aß production by upregulating the SREBP2/BACE1 pathway and promoting APP endocytosis. In addition, the ability of microglia to phagocytose and degrade Aß is destroyed by ABCA7 deficiency, leading to reduced clearance of Aß. Finally, disturbance of lipid metabolism may also be an important method by which ABCA7 variants influence the incidence rate of AD. In the future, more attention should be given to different ABCA7 variants and ABCA7 targeted therapies for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Amyloid beta-Protein Precursor/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Amyloid beta-Peptides/metabolism
3.
Front Nutr ; 10: 1103303, 2023.
Article in English | MEDLINE | ID: mdl-37063328

ABSTRACT

Background: There are many metabolic pathway abnormalities in Alzheimer's disease (AD). Several studies have linked branched-chain amino acid (BCAA) metabolism disorders with AD but have not obtained consistent results. The purpose of this study is to explore the causal association between BCAA concentration and the risk of AD. Methods: A bidirectional Mendelian randomized (MR) study was applied to explore the causal effect between BCAA level and the risk of AD. Genetic instrumental variables from the genome-wide association study (GWAS) of serum BCAA levels [total BCAAs (115,047 participants), valine (115,048 participants), leucine (115,074 participants), and isoleucine (115,075 participants)] from the UK Biobank and AD (21,982 AD cases and 41,944 controls) from the International Genomics of Alzheimer's Project were applied to explore the causal effect through the inverse variance-weighted (IVW) method, MR-Egger, and weighted median, accompanied by multiple pluripotency and heterogeneity tests. Results: The forward MR analysis showed that there was no causal effect of total BCAAs (OR: 1.067, 95% CI: 0.838-1.358; p = 0.838), valine (OR: 1.106, 95% CI: 0.917-1.333; p = 0.292), leucine (OR: 1.096, 95% CI: 0.861-1.396; p = 0.659), and isoleucine (OR: 1.457, 95% CI: 1.024-2.742; p = 0.037) levels on the risk of AD. The reverse analysis showed that AD was related to reduced levels of total BCAAs (OR: 0.979, 95% CI: 0.989-0.990; p < 0.001), valine (OR: 0.977, 95% CI: 0.963-0.991; p = 0.001), leucine (OR: 0.983, 95% CI: 0.973-0.994; p = 0.002), and isoleucine (OR: 0.982, 95% CI: 0.971-0.992; p = 0.001). Conclusion: We provide robust evidence that AD was associated with a decreased level of BCAAs, which can serve as a marker for early diagnosis of AD.

4.
Front Immunol ; 13: 986346, 2022.
Article in English | MEDLINE | ID: mdl-36159817

ABSTRACT

Background: Immune system dysfunction has been proven to be an important pathological event in Alzheimer's disease (AD). Mild cognitive impairment (MCI), as a transitional stage between normal cognitive function and AD, was an important research object for the screening of early diagnostic markers and therapeutic targets for AD. However, systematic assessment of peripheral immune system changes in MCI patients and consistent analysis with that in the CNS were still lacking. Methods: Peripheral blood transcriptome data from the AddNeuroMed Cohort (n = 711) was used as a training dataset to assess the abundance of 24 immune cells through ImmuCellAI and to identify MCI-related immune signaling pathways and hub genes. The expression level of the immune hub gene was validated in peripheral blood (n = 587) and brain tissue (78 entorhinal cortex, 140 hippocampi, 91 temporal cortex, and 232 frontal cortex) validation datasets. Finally, reliable immune hub genes were applied for Gene Set Enrichment Analysis and correlation analysis of AD pathological characteristics. Results: MCI patients have early changes in the abundance of various types of immune cells in peripheral blood, accompanied by significant changes in NF-kB, TNF, JAK-STAT, and MAPK signaling pathways. Five hub immune-related differentially expressed genes (NFKBIA, CD4, RELA, CASP3, and HSP90AA1) were screened by the cytoHubba plugin in Cytoscape and the least absolute shrinkage and selection operator (LASSO) regression. Their expression levels were significantly correlated with infiltration score and the abundance of monocytes, natural killer cells, Th2 T cells, T follicular helper cells, and cytotoxic T cells. After validation with independent datasets derived from peripheral blood and brain, RELA and HSP90AA1 were identified as two reliable immune hub genes in MCI patients and had consistent changes in AD. The Gene Set Enrichment Analysis (GSEA) showed that their expression levels were closely associated with Alzheimer's disease, JAK-STAT, calcium signaling pathway, etc. In addition, the expression level of RELA was positively correlated with ß- and γ-secretase activity and Braak stage. The expression level of HSP90AA1 was negatively correlated with α- and ß-secretase activity. Conclusion: Immune system dysfunction was an early event in AD. It provides a new target for the early diagnosis and treatment of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Brain/metabolism , Caspase 3/metabolism , Cognitive Dysfunction/diagnosis , Humans , NF-kappa B/metabolism , Transcriptome
5.
J Neuroinflammation ; 19(1): 236, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171620

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease and its pathogenesis is still unclear. There is dysbiosis of gut microbiota in AD patients. More importantly, dysbiosis of the gut microbiota has been observed not only in AD patients, but also in patients with mild cognitive impairment (MCI). However, the mechanism of gut microbiota dysbiosis in AD is poorly understood. Cholinergic anti-inflammatory pathway is an important pathway for the central nervous system (CNS) regulation of peripheral immune homeostasis, especially in the gut. Therefore, we speculated that dysfunction of cholinergic anti-inflammatory pathway is a potential pathway for dysbiosis of the gut microbiota in AD. METHODS: In this study, we constructed AD model mice by injecting Aß1-42 into the lateral ventricle, and detected the cognitive level of mice by the Morris water maze test. In addition, 16S rDNA high-throughput analysis was used to detect the gut microbiota abundance of each group at baseline, 2 weeks and 4 weeks after surgery. Furthermore, immunofluorescence and western blot were used to detect alteration of intestinal structure of mice, cholinergic anti-inflammatory pathway, and APP process of brain and colon in each group. RESULTS: Aß1-42 i.c.v induced cognitive impairment and neuron damage in the brain of  mice. At the same time, Aß1-42 i.c.v induced alteration of gut microbiota at 4 weeks after surgery, while there was no difference at the baseline and 2 weeks after surgery. In addition, changes in colon structure and increased levels of pro-inflammatory factors were detected in Aß1-42 treatment group, accompanied by inhibition of cholinergic anti-inflammatory pathways. Amyloidogenic pathways in both the brain and colon were accelerated in Aß1-42 treatment group. CONCLUSIONS: The present findings suggested that Aß in the CNS can induce gut microbiota dysbiosis, alter intestinal structure and accelerate the amyloidogenic pathways, which were related to inhibiting cholinergic anti-inflammatory pathways.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/toxicity , Animals , DNA, Ribosomal , Dysbiosis/chemically induced , Gastrointestinal Microbiome/physiology , Lateral Ventricles/pathology , Mice , Neuroimmunomodulation
6.
Immunogenetics ; 74(6): 527-537, 2022 12.
Article in English | MEDLINE | ID: mdl-35861879

ABSTRACT

Crohn's disease (CD), a subtype of inflammatory bowel disease (IBD), has increasing prevalence in the world. Due to the lack of cure strategy, most patients with CD develop progressive disease companying with a series of serious complications. Therefore, exploring molecular mechanism differences between active and inactive CD will help in the screening of predict markers and therapeutic targets. In this study, we analyzed differentially expressed genes (DEGs) and molecular pathways through between active and inactive CD patients. In addition, the abundance of 22 immune cell types were assessed by using the CIBERSORT. The hub DEGs were screened out by the CytoHubba in Cytoscape, followed by the least absolute shrinkage and selection operator (LASSO) regression. Finally, the clinical predictive model was constructed by binary logistic regression model. The diagnostic efficacy was tested by receiver operating characteristic (ROC) curve and verified in independent datasets. The results showed that there were 137 DEGs between the active and inactive CD. Most of them were involved in regulating the immunity process. In addition, the decreased abundance of CD8 T cells and the increased abundance of M0, M1 macrophages, and neutrophils were closely related to CD activation. CXCL9, C3AR1, IL1B, and TLR4 were the hub gene and can be applied to the prediction of CD activation. Our results provided important targets for the prediction of CD activation and the selection of therapeutic targets.


Subject(s)
Crohn Disease , Humans , Crohn Disease/genetics , Crohn Disease/diagnosis , Biomarkers , ROC Curve
7.
Aging Dis ; 13(4): 1252-1266, 2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35855330

ABSTRACT

Short-chain fatty acids (SCFAs) are important metabolites derived from the gut microbiota through fermentation of dietary fiber. SCFAs participate a number of physiological and pathological processes in the human body, such as host metabolism, immune regulation, appetite regulation. Recent studies on gut-brain interaction have shown that SCFAs are important mediators of gut-brain interactions and are involved in the occurrence and development of many neurodegenerative diseases, including Alzheimer's disease. This review summarizes the current research on the potential roles and mechanisms of SCFAs in AD. First, we introduce the metabolic distribution, specific receptors and signaling pathways of SCFAs in human body. The concentration levels of SCFAs in AD patient/animal models are then summarized. In addition, we illustrate the effects and mechanisms of SCFAs on the cognitive level, pathological features (Aß and tau) and neuroinflammation in AD. Finally, we analyze the translational value of SCFAs as potential therapeutic targets for the treatment of AD.

8.
Front Aging Neurosci ; 14: 887168, 2022.
Article in English | MEDLINE | ID: mdl-35619939

ABSTRACT

Background: Alzheimer's disease (AD) is the most common type of neurodegenerative disease. Tau pathology is one of the pathological features of AD, and its progression is closely related to the progress of AD. Immune system dysfunction is an important mediator of Tau pathological progression, but the specific molecular mechanism is still unclear. The purpose of this study is to determine the immune hub genes and peripheral immune cell infiltration associated with the Braak stages, and the molecular mechanisms between them. Methods: In this study, 60 samples with different Braak stages in the GSE106241 dataset were used to screen Braak stages-related immune hub genes by using the WGCNA package in R and cytoHubba plugin. The temporal lobe expression data in the Alzdata database were used to verify the results. The correlation between the expression level of immune core genes and the pathological features of AD was analyzed to evaluate the abundance of peripheral immune cell infiltration and screened Braak stages-related cells. Finally, we used correlation analysis of immune hub genes and immune cells and Gene Set Enrichment Analysis (GSEA) of them. Results: Seven genes (GRB2, HSP90AA1, HSPA4, IGF1, KRAS, PIK3R1, and PTPN11) were identified as immune core genes after the screening of the test datasets and validation of independent data. Among them, Kirsten rat sarcoma viral oncogene homolog (KRAS) and Phosphoinositide-3-Kinase Regulatory Subunit 1 (PIK3R1) were the most closely related to Tau and Aß pathology in AD. In addition, the ImmuneScore increased gradually with the increase of Braak stages. Five types of immune cells (plasma cells, T follicular helper cells, M2 macrophage, activated NK cells, and eosinophils) were correlated with Braak stages. KRAS and PIK3R1 were the immune core genes most related to the abnormal infiltration of peripheral immune cells. They participated in the regulation of the pathological process of AD through axon guidance, long-term potentiation, cytokine-cytokine receptor interaction, RNA polymerase, etc. Conclusion: The KRAS and PIK3R1 genes were identified as the immune hub genes most associated with Tau pathological progress in AD. The abnormal infiltration of peripheral immune cells mediated by these cells was involved in the Tau pathological process. This provides new insights for AD.

9.
Mov Disord ; 37(3): 545-552, 2022 03.
Article in English | MEDLINE | ID: mdl-34820915

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most common type of paroxysmal dyskinesias. Only one-third of PKD patients are attributed to proline-rich transmembrane protein 2 (PRRT2) mutations. OBJECTIVE: We aimed to explore the potential causative gene for PKD. METHODS: A cohort of 196 PRRT2-negative PKD probands were enrolled for whole-exome sequencing (WES). Gene Ranking, Identification and Prediction Tool, a method of case-control analysis, was applied to identify the candidate genes. Another 325 PRRT2-negative PKD probands were subsequently screened with Sanger sequencing. RESULTS: Transmembrane Protein 151 (TMEM151A) variants were mainly clustered in PKD patients compared with the control groups. 24 heterozygous variants were detected in 25 of 521 probands (frequency = 4.80%), including 18 missense and 6 nonsense mutations. In 29 patients with TMEM151A variants, the ratio of male to female was 2.63:1 and the mean age of onset was 12.93 ± 3.15 years. Compared with PRRT2 mutation carriers, TMEM151A-related PKD were more common in sporadic PKD patients with pure phenotype. There was no significant difference in types of attack and treatment outcome between TMEM151A-positive and PRRT2-positive groups. CONCLUSIONS: We consolidated mutations in TMEM151A causing PKD with the aid of case-control analysis of a large-scale WES data, which broadens the genotypic spectrum of PKD. TMEM151A-related PKD were more common in sporadic cases and tended to present as pure phenotype with a late onset. Extensive functional studies are needed to enhance our understanding of the pathogenesis of TMEM151A-related PKD. © 2021 International Parkinson and Movement Disorder Society.


Subject(s)
Chorea , Dystonia , Membrane Proteins , Adolescent , Child , Female , Humans , Male , Chorea/genetics , Dystonia/genetics , Membrane Proteins/metabolism , Mutation/genetics , Phenotype
10.
Ageing Res Rev ; 68: 101317, 2021 07.
Article in English | MEDLINE | ID: mdl-33711509

ABSTRACT

In the past decade, numerous studies have demonstrated the close relationship between gut microbiota and the occurrence and development of Alzheimer's disease (AD). However, the specific mechanism is still unclear. Both the neuroinflammation and systemic inflammation serve as the key hubs to accelerate the process of AD by promoting pathology and damaging neuron. What's more, the gut microbiota is also crucial for the regulation of inflammation. Therefore, this review focused on the role of gut microbiota in AD through inflammatory pathways. Firstly, this review summarized the relationship and interaction among gut microbiota, inflammation, and AD. Secondly, the direct and indirect regulatory effects of gut microbiota on AD through inflammatory pathways were described. These effects were mainly mediated by the component of the gut microbiota (lipopolysaccharides (LPS) and amyloid peptides), the metabolites of bacteria (short-chain fatty acids, branched amino acids, and neurotransmitters) and functional by-products (bile acids). In addition, potential treatments (fecal microbiota transplantation, antibiotics, probiotics, prebiotics, and dietary interventions) for AD were also discussed through these mechanisms. Finally, according to the current research status, the key problems to be solved in the future studies were proposed.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Probiotics , Alzheimer Disease/therapy , Amyloid , Fecal Microbiota Transplantation , Humans , Probiotics/therapeutic use
11.
Seizure ; 84: 47-52, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33278788

ABSTRACT

BACKGROUND: Mutations in the IRF2BPL gene can cause neurodevelopmental disorders. We describe the clinical and genetic characteristics of a Chinese patient with a novel abnormality in this gene, explore the potential pathogenic mechanism and summarize the clinical characteristics of 25 patients with IRF2BPL mutations. METHODS: We identified the gene mutation sites by whole-exome and Sanger sequencing. The protein-protein interaction network of the IRF2BPL gene was constructed using bioinformatic techniques, and its function was enriched. We conducted a functional experiment to explore the potential pathogenicity of the identified IRF2BPL gene mutation. RESULTS: An 8-year-old girl presented with progressive cerebellar ataxia, including involuntary tremor and slurred speech. Electroencephalography and electromyography revealed no abnormalities. Structural cranial MRI was also normal, but genetic analysis identified a truncating de novo variant in IRF2BPL. Bioinformatics predicted that IRF2BPL would be associated with IRF2 and 10 other genes and involved in ubiquitin binding and other pathways. The cellular location of IRF2BPL was altered, and compared to control cells, the level of ubiquitinated proteins was significantly decreased in cells harbouring the mutation. CONCLUSION: In this study, we identified a truncating de novo variant of IRF2BPL as a causative gene in the neurodevelopmental disorder of a Chinese girl. Impairment of the ubiquitin-proteasome pathway caused by this IRF2BPL mutation may play an important role in this neurodevelopmental disorder.


Subject(s)
Neurodevelopmental Disorders , Carrier Proteins/genetics , Child , Electroencephalography , Female , Humans , Mutation/genetics , Neurodevelopmental Disorders/genetics , Nuclear Proteins/genetics , Exome Sequencing
12.
J Alzheimers Dis ; 63(4): 1537-1546, 2018.
Article in English | MEDLINE | ID: mdl-29782322

ABSTRACT

There is accumulating evidence that decreased histone acetylation is involved in normal aging and neurodegenerative diseases. Recently, we found that ANP32A, a key component of INHAT (inhibitor of acetyltransferases) that suppresses histone acetylation, increased in aged and cognitively impaired C57 mice and expressing wild-type human full length tau (htau) transgenic mice. Downregulating ANP32A restored cognitive function and synaptic plasticity through upregulation of the expressions of synaptic-related proteins via increasing histone acetylation. However, there is no direct evidence that ANP32A can induce neurodegeneration and memory deficits. In the present study, we overexpressed ANP32A in the hippocampal CA3 region of C57 mice and found that ANP32A overexpression induced cognitive abilities and synaptic plasticity deficits, with decreased synaptic-related protein expression and histone acetylation. Combined with our recent studies, our findings reveal that upregulated ANP32A induced-suppressing histone acetylation may underlie the cognitive decline in neurodegenerative disease, and suppression of ANP32A may represent a promising therapeutic approach for neurodegenerative diseases including Alzheimer's disease.


Subject(s)
Histones/metabolism , Memory Disorders/enzymology , Memory Disorders/genetics , Nuclear Proteins/metabolism , Up-Regulation/genetics , Acetylation , Age Factors , Animals , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Dendritic Spines/metabolism , Dendritic Spines/pathology , Dendritic Spines/ultrastructure , Dependovirus/genetics , Disease Models, Animal , Excitatory Postsynaptic Potentials/genetics , Excitatory Postsynaptic Potentials/physiology , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Maze Learning/physiology , Memory Disorders/pathology , Mice , Mice, Inbred C57BL , Nuclear Proteins/genetics , RNA-Binding Proteins , Receptors, Glutamate/metabolism , Synapsins/metabolism , Synaptophysin/metabolism , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...