Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(20)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896516

ABSTRACT

The measurement of seed cotton moisture regain (MR) during harvesting operations is an open and challenging problem. In this study, a new method for resistive sensing of seed cotton MR measurement based on pressure compensation is proposed. First, an experimental platform was designed. After that, the change of cotton bale parameters during the cotton picker packaging process was simulated through the experimental platform, and the correlations among the compression volume, compression density, contact pressure, and conductivity of seed cotton were analyzed. Then, support vector regression (SVR), random forest (RF), and a backpropagation neural network (BPNN) were employed to build seed cotton MR prediction models. Finally, the performance of the method was evaluated through the experimental platform test. The results showed that there was a weak correlation between contact pressure and compression volume, while there was a significant correlation (p < 0.01) between contact pressure and compression density. Moreover, the nonlinear mathematical models exhibited better fitting performance than the linear mathematical models in describing the relationships among compression density, contact pressure, and conductivity. The comparative analysis results of the three MR prediction models showed that the BPNN algorithm had the highest prediction accuracy, with a coefficient of determination (R2) of 0.986 and a root mean square error (RMSE) of 0.204%. The mean RMSE and mean coefficient of variation (CV) of the performance evaluation test results were 0.20% and 2.22%, respectively. Therefore, the method proposed in this study is reliable. In addition, the study will provide a technical reference for the accurate and rapid measurement of seed cotton MR during harvesting operations.

2.
Langmuir ; 38(11): 3597-3606, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35266725

ABSTRACT

Enhancing the lubrication property and bacterial resistance is extremely important for interventional biomedical implants to avoid soft tissue damage and biofilm formation. In this study, a zwitterionic phosphorylcholine coating (PMPC) was successfully developed to achieve surface functionalization of a polyurethane (PU)-based ureteral stent via subsurface "grafting from" photopolymerization. Typical surface characterizations such as Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and surface wettability and morphology analyses examined by scanning electron microscopy, atomic force microscopy, and transmission electron microscopy demonstrated that the phosphorylcholine polymer was grafted on the substrate with a thickness of 180 nm. Additionally, the tribological experiment performed by a universal material tester showed that the lubrication performance of PU-PMPC was significantly improved compared with that of PU. The in vitro experiments indicated that the PMPC coating was biocompatible and stably modified on the surface of the substrate with an excellent bacterial resistance rate of >90%. Furthermore, the result of the in vivo experiment showed that the anti-encrustation performance of the surface-functionalized ureteral stent was better than that of the bare ureteral stent. The great enhancement in the lubrication, bacterial resistance, and anti-encrustation properties of the phosphorylcholine coating was thought to be due to the hydration effects of the zwitterionic charges. In summary, the bioinspired zwitterionic phosphorylcholine coating developed herein achieved significantly improved lubrication, bacterial resistance, and anti-encrustation performances and could be used as a convenient approach for surface functionalization of interventional biomedical implants.


Subject(s)
Phosphorylcholine , Polyurethanes , Lubrication , Phosphorylcholine/chemistry , Surface Properties , Wettability
SELECTION OF CITATIONS
SEARCH DETAIL