Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Publication year range
1.
Cancer Cell Int ; 24(1): 142, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38643145

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is widely recognized for its unfavorable prognosis. Increasing evidence has revealed that LGALS3 has an essential function in initiating and developing several malignancies in humans. Nevertheless, thorough analysis of the expression profile, clinical prognosis, pathway prediction, and immune infiltration of LGALS3 has not been fully explored in HCC. METHODS: In this study, an initial pan-cancer analysis was conducted to investigate the expression and prognosis of LGALS3. Following a comprehensive analysis, which included expression analysis and correlation analysis, noncoding RNAs that contribute to the overexpression of LGALS3 were subsequently identified. This identification was further validated using HCC clinical tissue samples. TIMER2 and GEPIA2 were employed to examine the correlation between LGALS3 and HCP5 with immunological checkpoints, cell chemotaxis, and immune infiltration in HCC. The R program was applied to analyze the expression distribution of immune score in in HCC patients with high and low LGALS3 expression. The expression profiles of immune checkpoints were also analyzed. Use R to perform GSVA analysis in order to explore potential signaling pathways. RESULTS: First, we conducted pan-cancer analysis for LGALS3 expression level through an in-depth analysis of public databases and found that HCC has a high LGALS3 gene and protein expression level, which were then verified in clinical HCC specimens. Meanwhile, high LGALS3 gene expression is related to malignant progression and poor prognosis of HCC. Univariate and multivariate analyses confirmed that LGALS3 could serve as an independent prognostic marker for HCC. Next, by combining comprehensive analysis and validation on HCC clinical tissue samples, we hypothesize that the HCP5/hsa-miR-27b-3p axis could serve as the most promising LGALS3 regulation mechanism in HCC. KEGG and GO analyses highlighted that the LGALS3-related genes were involved in tumor immunity. Furthermore, we detected a significant positive association between LGALS3 and HCP5 with immunological checkpoints, cell chemotaxis, and immune infiltration. In addition, high LGALS3 expression groups had significantly higher immune cell scores and immune checkpoint expression levels. Finally, GSVA analysis was performed to predict potential signaling pathways linked to LGALS3 and HCP5 in immune evasion and metabolic reprogramming of HCC. CONCLUSIONS: Our findings indicated that the upregulation of LGALS3 via the HCP5/hsa-miR-27b-3p axis is associated with unfavorable prognosis and increased tumor immune infiltration in HCC.

2.
Acta Pharmacol Sin ; 45(3): 619-632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37848553

ABSTRACT

N6-methyladenosine (m6A) modification is a prevalent RNA epigenetic modification, which plays a crucial role in tumor progression including metastasis. Isothiocyanates (ITCs) are natural compounds and inhibit the tumorigenesis of various cancers. Our previous studies show that ITCs inhibit the proliferation and metastasis of non-small cell lung cancer (NSCLC) cells, and have synergistic effects with chemotherapy drugs. In this study, we investigated the molecular mechanisms underlying the inhibitory effects of ITCs on cancer cell metastasis. We showed that phenethyl isothiocyanate (PEITC) dose-dependently inhibited the cell viability of both NSCLC cell lines H1299 and H226 with IC50 values of 17.6 and 15.2 µM, respectively. Furthermore, PEITC dose-dependently inhibited the invasion and migration of H1299 and H226 cells. We demonstrated that PEITC treatment dose-dependently increased m6A methylation levels and inhibited the expression of the m6A demethylase fat mass and obesity-associated protein (FTO) in H1299 and H226 cells. Knockdown of FTO significantly increased m6A methylation in H1299 and H226 cells, impaired their abilities of invasion and migration in vitro, and enhanced the inhibition of PEITC on tumor growth in vivo. Overexpression of FTO promoted the migration of NSCLC cells, and also mitigated the inhibitory effect of PEITC on migration of NSCLC cells. Furthermore, we found that FTO regulated the mRNA m6A modification of a transcriptional co-repressor Transducin-Like Enhancer of split-1 (TLE1) and further affected its stability and expression. TCGA database analysis revealed TLE1 was upregulated in NSCLC tissues compared to normal tissues, which might be correlated with the metastasis status. Moreover, we showed that PEITC suppressed the migration of NSCLC cells by inhibiting TLE1 expression and downstream Akt/NF-κB pathway. This study reveals a novel mechanism underlying ITC's inhibitory effect on metastasis of lung cancer cells, and provided valuable information for developing new therapeutics for lung cancer by targeting m6A methylation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/pathology , Cell Movement , Isothiocyanates/pharmacology , Isothiocyanates/therapeutic use , Cell Line, Tumor , Co-Repressor Proteins/pharmacology , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics
3.
Int J Biol Sci ; 19(5): 1616-1632, 2023.
Article in English | MEDLINE | ID: mdl-37056933

ABSTRACT

Cancer progression depends on the communication between tumor cells and tumor microenvironment. Cancer-associated fibroblasts (CAFs) are a major component of stromal cells. CAFs promote cancer metastasis; however, it has not been evaluated whether N6-methyladenosine (m6A) modification is responsible for CAFs' role in metastasis. In the present study, we found that CAFs promoted migration and invasion of non-small cell lung cancer (NSCLC) cells by elevating m6A modification in NSCLC cells. Methyltransferase-like 3 (METTL3) in NSCLC cells mediated CAFs' effect on m6A modification, and was regulated by CAFs-secreted vascular endothelial growth factor A (VEGFA). METTL3 knockdown in NSCLC cells dramatically inhibited cell migration and invasion, and suppressed tumor growth in vivo. Database analysis revealed that METTL3 was associated with poor prognosis of lung cancer. The mechanism study showed that METTL3 increased m6A level of RAC3 mRNA, resulting in increased stability and translation of RAC3 mRNA. RAC3 was responsible for the CAFs' promoting effect on cell migration via the AKT/NF-κB pathway. This study established a CAF-METTL3-RAC3 m6A modification-dependent regulation system in NSCLC metastasis, suggesting potential candidates for metastasis treatment.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , rac GTP-Binding Proteins/metabolism , RNA, Messenger/metabolism , Tumor Microenvironment , Vascular Endothelial Growth Factor A/metabolism
4.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1005184

ABSTRACT

@#[摘 要] N7-甲基鸟苷(m7G)是表观遗传学调控过程中最常见的RNA修饰之一,在mRNA、核糖体RNA(rRNA)、转运RNA(tRNA)、miRNA等多种RNA分子的加工和代谢中起着重要作用,进而参与细胞增殖、分化、凋亡和迁移等多种功能。越来越多的证据表明,m7G甲基化修饰参与肿瘤的发生发展。异常的m7G甲基化修饰通过调控癌基因和抑制基因的表达促进或抑制多种肿瘤的进展,m7G甲基化修饰及其调控因子可能是肿瘤诊断和治疗的潜在靶点。本文就m7G甲基化修饰的最新研究进展、检测方法及其在肿瘤发生发展中作用的分子机制进行评述。

5.
Polymers (Basel) ; 14(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35160405

ABSTRACT

The fatigue resistance of asphalt mixture is an important indicator to evaluate the durability of asphalt pavement. In order to improve the fatigue properties of asphalt mixture, diatomite and environmental basalt fiber were added. Four types of asphalt mixtures, ordinary asphalt mixture (AM), diatomite modified asphalt mixture (DAM), basalt fiber modified asphalt mixture (BFAM) and diatomite/basalt fiber composite modified asphalt mixture (DBFAM), were chosen, whose optimum asphalt-aggregate ratio, optimum content of diatomite and optimum content of basalt fiber could be determined by Marshall test and response surface methodology (RSM). The multi-functional pneumatic servo Cooper test machine was carried out by a four-point bending fatigue test. Through the comparative analysis of flexural-tensile stiffness modulus (S), initial stiffness modulus(S0), residual stiffness modulus ratio, lag angle (ϕ) and cumulative dissipation energy (ECD), the fatigue resistance of asphalt mixture can be effectively improved by adding diatomite and basalt fiber. Grey correlation analysis was also used to analyze the degree of correlation between the fatigue life and the influencing factors such as VV, VMA, VFA, OAC, S, and ECD. The analysis results indicate that ECD has the greatest impact on the fatigue life of the asphalt mixture.

SELECTION OF CITATIONS
SEARCH DETAIL
...